論文の概要: A Survey on the Explainability of Supervised Machine Learning
- arxiv url: http://arxiv.org/abs/2011.07876v1
- Date: Mon, 16 Nov 2020 11:25:39 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-24 23:21:50.200979
- Title: A Survey on the Explainability of Supervised Machine Learning
- Title(参考訳): 教師付き機械学習の説明可能性に関する調査
- Authors: Nadia Burkart and Marco F. Huber
- Abstract要約: ブラックボックスの背後にある決定は、より透明で説明責任があり、人間にとって理解しやすくする必要がある。
本報告では、本質的な定義、説明可能なスーパーバイザード・機械学習の原理と方法論の概要について述べる。
- 参考スコア(独自算出の注目度): 5.5510642465908715
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Predictions obtained by, e.g., artificial neural networks have a high
accuracy but humans often perceive the models as black boxes. Insights about
the decision making are mostly opaque for humans. Particularly understanding
the decision making in highly sensitive areas such as healthcare or fifinance,
is of paramount importance. The decision-making behind the black boxes requires
it to be more transparent, accountable, and understandable for humans. This
survey paper provides essential definitions, an overview of the different
principles and methodologies of explainable Supervised Machine Learning (SML).
We conduct a state-of-the-art survey that reviews past and recent explainable
SML approaches and classifies them according to the introduced definitions.
Finally, we illustrate principles by means of an explanatory case study and
discuss important future directions.
- Abstract(参考訳): 例えば、ニューラルネットワークによって得られる予測は精度が高いが、人間はしばしばモデルをブラックボックスとして認識する。
意思決定に関する洞察は、ほとんど人間には不透明である。
特に,医療やファイナンスといった高度に敏感な領域における意思決定を理解することは,非常に重要である。
ブラックボックスの背後にある意思決定は、より透明で説明責任があり、人間にとって理解しやすくする必要がある。
本稿では,説明可能な教師付き機械学習(sml)の原理と方法論を概説する本質的定義について述べる。
我々は、過去および最近の説明可能なSMLアプローチをレビューし、導入した定義に従ってそれらを分類する最先端の調査を行う。
最後に,説明的ケーススタディを用いて原則を説明し,今後の重要な方向性について論じる。
関連論文リスト
- Understanding Multimodal Deep Neural Networks: A Concept Selection View [29.08342307127578]
概念に基づくモデルは、ディープニューラルネットワークによって抽出されたブラックボックスの視覚表現を、人間の理解可能な概念のセットにマッピングする。
人間の先入観を導入することなくコア概念をマイニングするための2段階概念選択モデル(CSM)を提案する。
提案手法は,エンドツーエンドのブラックボックスモデルに匹敵する性能を実現する。
論文 参考訳(メタデータ) (2024-04-13T11:06:49Z) - Evaluating the Utility of Model Explanations for Model Development [54.23538543168767]
機械学習モデル構築の実践シナリオにおいて、説明が人間の意思決定を改善するかどうかを評価する。
驚いたことに、サリエンシマップが提供されたとき、タスクが大幅に改善されたという証拠は見つからなかった。
以上の結果から,サリエンシに基づく説明における誤解の可能性と有用性について注意が必要であることが示唆された。
論文 参考訳(メタデータ) (2023-12-10T23:13:23Z) - Interpreting Pretrained Language Models via Concept Bottlenecks [55.47515772358389]
事前訓練された言語モデル(PLM)は、様々な自然言語処理タスクにおいて大きな進歩を遂げてきた。
ブラックボックスの性質による解釈可能性の欠如は、責任ある実装に課題をもたらす。
本研究では,人間にとって理解しやすい高レベルで有意義な概念を用いて,PLMを解釈する新しい手法を提案する。
論文 参考訳(メタデータ) (2023-11-08T20:41:18Z) - How Well Do Feature-Additive Explainers Explain Feature-Additive
Predictors? [12.993027779814478]
LIME、SHAP、SHAPR、MAPLE、PDPといった人気機能付加型推論器は、機能付加型予測器を説明できるだろうか?
本稿では,モデルの加法構造から解析的に導出される基底真理について,そのような説明を行う。
以上の結果から,全ての説明者が機能の重要性を正しく評価できないことが示唆された。
論文 参考訳(メタデータ) (2023-10-27T21:16:28Z) - Explaining Explainability: Towards Deeper Actionable Insights into Deep
Learning through Second-order Explainability [70.60433013657693]
2階説明可能なAI(SOXAI)は、最近インスタンスレベルからデータセットレベルまで説明可能なAI(XAI)を拡張するために提案されている。
そこで本研究では,SOXAIの動作可能な洞察に基づくトレーニングセットから無関係な概念を除外することで,モデルの性能を向上させることができることを示す。
論文 参考訳(メタデータ) (2023-06-14T23:24:01Z) - From Attribution Maps to Human-Understandable Explanations through
Concept Relevance Propagation [16.783836191022445]
eXplainable Artificial Intelligence(XAI)の分野は、今日の強力だが不透明なディープラーニングモデルに透明性をもたらすことを目指している。
局所的なXAI手法は属性マップの形で個々の予測を説明するが、グローバルな説明手法はモデルが一般的にエンコードするために学んだ概念を視覚化する。
論文 参考訳(メタデータ) (2022-06-07T12:05:58Z) - On the Objective Evaluation of Post Hoc Explainers [10.981508361941335]
機械学習研究の最近の傾向は、それらがブラックボックスであると考えられる程度に、ますます複雑化しているアルゴリズムにつながっている。
意思決定の不透明度を低減するため、そのようなモデルの内部動作を人間に理解可能な方法で解釈する手法が提案されている。
本稿では,モデルの加法構造から直接導出される地底真理に基づくポストホック説明器の評価のための枠組みを提案する。
論文 参考訳(メタデータ) (2021-06-15T19:06:51Z) - Expressive Explanations of DNNs by Combining Concept Analysis with ILP [0.3867363075280543]
我々は,dnn(feed-forward convolutional deep neural network)の理論的根拠をグローバル,表現的,言語的に説明するために,ネットワークが学習した本質的特徴を用いた。
我々の説明は元々のブラックボックスモデルに忠実であることを示している。
論文 参考訳(メタデータ) (2021-05-16T07:00:27Z) - Interpretable Deep Learning: Interpretations, Interpretability,
Trustworthiness, and Beyond [49.93153180169685]
一般に混同される2つの基本的な概念(解釈と解釈可能性)を紹介・明らかにする。
我々は,新しい分類法を提案することにより,異なる視点から,最近のいくつかの解釈アルゴリズムの設計を詳細に述べる。
信頼される」解釈アルゴリズムを用いてモデルの解釈可能性を評価する上での既存の作業をまとめる。
論文 参考訳(メタデータ) (2021-03-19T08:40:30Z) - Explainability in Deep Reinforcement Learning [68.8204255655161]
説明可能な強化学習(XRL)の実現に向けての最近の成果を概観する。
エージェントの振る舞いを正当化し、説明することが不可欠である重要な状況において、RLモデルのより良い説明可能性と解釈性は、まだブラックボックスと見なされているものの内部動作に関する科学的洞察を得るのに役立つ。
論文 参考訳(メタデータ) (2020-08-15T10:11:42Z) - An Information-Theoretic Approach to Personalized Explainable Machine
Learning [92.53970625312665]
本稿では,予測とユーザ知識のための簡易確率モデルを提案する。
説明と予測の間の条件付き相互情報による説明の効果を定量化する。
論文 参考訳(メタデータ) (2020-03-01T13:06:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。