論文の概要: Explainability in Deep Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2008.06693v4
- Date: Fri, 18 Dec 2020 10:08:51 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-28 21:02:51.910661
- Title: Explainability in Deep Reinforcement Learning
- Title(参考訳): 深層強化学習における説明可能性
- Authors: Alexandre Heuillet, Fabien Couthouis and Natalia D\'iaz-Rodr\'iguez
- Abstract要約: 説明可能な強化学習(XRL)の実現に向けての最近の成果を概観する。
エージェントの振る舞いを正当化し、説明することが不可欠である重要な状況において、RLモデルのより良い説明可能性と解釈性は、まだブラックボックスと見なされているものの内部動作に関する科学的洞察を得るのに役立つ。
- 参考スコア(独自算出の注目度): 68.8204255655161
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: A large set of the explainable Artificial Intelligence (XAI) literature is
emerging on feature relevance techniques to explain a deep neural network (DNN)
output or explaining models that ingest image source data. However, assessing
how XAI techniques can help understand models beyond classification tasks, e.g.
for reinforcement learning (RL), has not been extensively studied. We review
recent works in the direction to attain Explainable Reinforcement Learning
(XRL), a relatively new subfield of Explainable Artificial Intelligence,
intended to be used in general public applications, with diverse audiences,
requiring ethical, responsible and trustable algorithms. In critical situations
where it is essential to justify and explain the agent's behaviour, better
explainability and interpretability of RL models could help gain scientific
insight on the inner workings of what is still considered a black box. We
evaluate mainly studies directly linking explainability to RL, and split these
into two categories according to the way the explanations are generated:
transparent algorithms and post-hoc explainaility. We also review the most
prominent XAI works from the lenses of how they could potentially enlighten the
further deployment of the latest advances in RL, in the demanding present and
future of everyday problems.
- Abstract(参考訳): 説明可能な人工知能(XAI)の文献の大規模なセットは、ディープニューラルネットワーク(DNN)の出力を説明する機能関連技術や、画像ソースデータを取り込み込むモデルの説明に現れている。
しかしながら、XAI技術が分類タスク以外のモデル、例えば強化学習(RL)の理解にどのように役立つかを評価することは、広く研究されていない。
本稿では,最近の研究成果である説明可能強化学習(xrl)の達成に向けて検討する。説明可能な人工知能の比較的新しいサブフィールドであり,一般の一般用途での利用を意図しており,多様なオーディエンスを対象とし,倫理的,責任的,信頼性の高いアルゴリズムを必要とする。
エージェントの行動の正当化と説明が不可欠である重要な状況において、rlモデルのより優れた説明可能性と解釈性は、まだブラックボックスと見なされているものの内部動作に関する科学的洞察を得るのに役立つ。
我々は,説明可能性を直接rlにリンクする研究を主に評価し,説明の生成方法に応じて2つのカテゴリに分類した。
また、レンズから最も顕著なXAIの成果を概観し、RLにおける最新の進歩のさらなる展開を、日々の課題の現在と未来にどのように啓蒙するかを考察する。
関連論文リスト
- Semifactual Explanations for Reinforcement Learning [1.5320737596132754]
強化学習(Reinforcement Learning、RL)は、エージェントが試行錯誤を通じて環境から学習する学習パラダイムである。
ディープ強化学習(DRL)アルゴリズムは、ニューラルネットワークを使用してエージェントのポリシーを表現し、その決定を解釈しにくくする。
DRLエージェントの動作を説明するには,ユーザの信頼を向上し,エンゲージメントを高め,実際のタスクとの統合を容易にする必要がある。
論文 参考訳(メタデータ) (2024-09-09T08:37:47Z) - Gradient based Feature Attribution in Explainable AI: A Technical Review [13.848675695545909]
ブラックボックスAIモデルの急増は、内部メカニズムを説明し、信頼性を正当化する必要性を喚起している。
勾配に基づく説明は、ニューラルネットワークモデルに直接適用することができる。
アルゴリズムの性能を測定するために,人的評価と定量的評価の両方を導入する。
論文 参考訳(メタデータ) (2024-03-15T15:49:31Z) - Opening the Black-Box: A Systematic Review on Explainable AI in Remote Sensing [51.524108608250074]
ブラックボックス機械学習アプローチは、リモートセンシングにおける知識抽出における主要なモデリングパラダイムとなっている。
我々は、この分野における重要なトレンドを特定するための体系的なレビューを行い、新しい説明可能なAIアプローチに光を当てた。
また,課題と将来的な研究方向性について,より詳細な展望を述べる。
論文 参考訳(メタデータ) (2024-02-21T13:19:58Z) - Explaining Explainability: Towards Deeper Actionable Insights into Deep
Learning through Second-order Explainability [70.60433013657693]
2階説明可能なAI(SOXAI)は、最近インスタンスレベルからデータセットレベルまで説明可能なAI(XAI)を拡張するために提案されている。
そこで本研究では,SOXAIの動作可能な洞察に基づくトレーニングセットから無関係な概念を除外することで,モデルの性能を向上させることができることを示す。
論文 参考訳(メタデータ) (2023-06-14T23:24:01Z) - A Survey on Explainable Reinforcement Learning: Concepts, Algorithms,
Challenges [38.70863329476517]
強化学習(Reinforcement Learning, RL)は、インテリジェントエージェントが環境と対話して長期的な目標を達成する、一般的な機械学習パラダイムである。
励ましの結果にもかかわらず、ディープニューラルネットワークベースのバックボーンは、専門家が高いセキュリティと信頼性が不可欠である現実的なシナリオにおいて、訓練されたエージェントを信頼し、採用することを妨げるブラックボックスとして広く見なされている。
この問題を緩和するために、本質的な解釈可能性やポストホックな説明可能性を構築することにより、知的エージェントの内部動作に光を放つための大量の文献が提案されている。
論文 参考訳(メタデータ) (2022-11-12T13:52:06Z) - Towards Human Cognition Level-based Experiment Design for Counterfactual
Explanations (XAI) [68.8204255655161]
XAI研究の重点は、より理解を深めるために、より実践的な説明アプローチに変わったようだ。
認知科学研究がXAIの進歩に大きく影響を与える可能性のある領域は、ユーザの知識とフィードバックを評価することである。
本研究では,異なる認知レベルの理解に基づく説明の生成と評価を実験する枠組みを提案する。
論文 参考訳(メタデータ) (2022-10-31T19:20:22Z) - Beyond Explaining: Opportunities and Challenges of XAI-Based Model
Improvement [75.00655434905417]
説明可能な人工知能(XAI)は、高度に複雑な機械学習(ML)モデルに透明性をもたらす新たな研究分野である。
本稿では,機械学習モデルの諸特性を改善するために,XAIを実用的に応用する手法を概観する。
実験では,モデル一般化能力や推論などの特性を改善する上で,説明がどのように役立つのかを,おもちゃと現実的な設定で実証的に示す。
論文 参考訳(メタデータ) (2022-03-15T15:44:28Z) - Explainable Reinforcement Learning: A Survey [0.0]
説明可能な人工知能(XAI)はここ数年で勢いを増している。
XAIモデルには1つの有害な特徴がある。
本調査は、説明可能な強化学習(XRL)手法の概要を提供することで、このギャップに対処しようとするものである。
論文 参考訳(メタデータ) (2020-05-13T10:52:49Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
我々は、AIシステムの説明を実装可能な一般的なフレームワークの理論的基盤として、科学的説明の構造の概念をインスタンス化する。
このフレームワークは、AIシステムの"メンタルモデル"を構築するためのツールを提供することを目的としている。
論文 参考訳(メタデータ) (2020-03-02T10:32:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。