論文の概要: Quantum deep field: data-driven wave function, electron density
generation, and atomization energy prediction and extrapolation with machine
learning
- arxiv url: http://arxiv.org/abs/2011.07923v1
- Date: Mon, 16 Nov 2020 13:15:16 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-25 01:26:24.028493
- Title: Quantum deep field: data-driven wave function, electron density
generation, and atomization energy prediction and extrapolation with machine
learning
- Title(参考訳): 量子深部場:データ駆動波動関数、電子密度生成、原子化エネルギー予測と機械学習による外挿
- Authors: Masashi Tsubaki and Teruyasu Mizoguchi
- Abstract要約: ディープニューラルネットワーク(DNN)は、コーン-シャム密度汎関数理論(KS-DFT)に基づいて計算された分子特性の予測に用いられている。
このレターでは、大規模データセット上で原子化エネルギーを学習することにより、教師なしだがエンドツーエンドの物理インフォームドモデリングで電子密度を提供する量子深度場(QDF)を提示する。
- 参考スコア(独自算出の注目度): 7.106986689736826
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks (DNNs) have been used to successfully predict molecular
properties calculated based on the Kohn--Sham density functional theory
(KS-DFT). Although this prediction is fast and accurate, we believe that a DNN
model for KS-DFT must not only predict the properties but also provide the
electron density of a molecule. This letter presents the quantum deep field
(QDF), which provides the electron density with an unsupervised but end-to-end
physics-informed modeling by learning the atomization energy on a large-scale
dataset. QDF performed well at atomization energy prediction, generated valid
electron density, and demonstrated extrapolation. Our QDF implementation is
available at https://github.com/masashitsubaki/QuantumDeepField_molecule.
- Abstract(参考訳): ディープニューラルネットワーク(DNN)は、コーン-シャム密度汎関数理論(KS-DFT)に基づいて計算された分子特性の予測に用いられている。
この予測は高速かつ正確であるが、KS-DFTのDNNモデルは特性を予測できるだけでなく、分子の電子密度も示さなければならないと考えている。
このレターは量子深層場(qdf)を示し、大規模データセットで微粒化エネルギーを学習することで、電子密度に教師なしだがエンドツーエンドの物理モデルを提供する。
QDFは原子化エネルギー予測に優れ、有効な電子密度を生成し、外挿を実証した。
QDFの実装はhttps://github.com/masashitsubaki/QuantumDeepField_moleculeで公開しています。
関連論文リスト
- Higher-Order Equivariant Neural Networks for Charge Density Prediction in Materials [3.7655047338409893]
ChargE3Netは、原子系の電子密度を予測するためのE(3)等価グラフニューラルネットワークである。
本稿では,ChargE3Netが分子や材料に対する先行研究よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-12-08T21:56:19Z) - QH9: A Quantum Hamiltonian Prediction Benchmark for QM9 Molecules [69.25826391912368]
QH9と呼ばれる新しい量子ハミルトンデータセットを生成し、999または2998の分子動力学軌道に対して正確なハミルトン行列を提供する。
現在の機械学習モデルでは、任意の分子に対するハミルトン行列を予測する能力がある。
論文 参考訳(メタデータ) (2023-06-15T23:39:07Z) - KineticNet: Deep learning a transferable kinetic energy functional for
orbital-free density functional theory [13.437597619451568]
KineticNetは、分子二次格子上の量の予測に適応した点畳み込みに基づく、同変のディープニューラルネットワークアーキテクチャである。
初めて、学習された関数の化学的精度は、小さな分子の入力密度とジオメトリーによって達成される。
論文 参考訳(メタデータ) (2023-05-08T17:43:31Z) - Molecular Geometry-aware Transformer for accurate 3D Atomic System
modeling [51.83761266429285]
本稿では,ノード(原子)とエッジ(結合と非結合の原子対)を入力とし,それらの相互作用をモデル化するトランスフォーマーアーキテクチャを提案する。
MoleformerはOC20の緩和エネルギー予測の初期状態の最先端を実現し、QM9では量子化学特性の予測に非常に競争力がある。
論文 参考訳(メタデータ) (2023-02-02T03:49:57Z) - Computing molecular excited states on a D-Wave quantum annealer [52.5289706853773]
分子系の励起電子状態の計算にD波量子アニールを用いることを実証する。
これらのシミュレーションは、太陽光発電、半導体技術、ナノサイエンスなど、いくつかの分野で重要な役割を果たしている。
論文 参考訳(メタデータ) (2021-07-01T01:02:17Z) - BIGDML: Towards Exact Machine Learning Force Fields for Materials [55.944221055171276]
機械学習力場(MLFF)は正確で、計算的で、データ効率が良く、分子、材料、およびそれらのインターフェースに適用できなければならない。
ここでは、Bravais-Inspired Gradient-Domain Machine Learningアプローチを導入し、わずか10-200原子のトレーニングセットを用いて、信頼性の高い力場を構築する能力を実証する。
論文 参考訳(メタデータ) (2021-06-08T10:14:57Z) - ForceNet: A Graph Neural Network for Large-Scale Quantum Calculations [86.41674945012369]
スケーラブルで表現力のあるグラフニューラルネットワークモデルであるForceNetを開発し、原子力を近似します。
提案したForceNetは、最先端の物理ベースのGNNよりも正確に原子力を予測することができる。
論文 参考訳(メタデータ) (2021-03-02T03:09:06Z) - On the equivalence of molecular graph convolution and molecular wave
function with poor basis set [7.106986689736826]
量子物理学に基づく機械学習モデルである量子深度場(QDF)について述べる。
分子エネルギー予測タスクでは、外挿の可能性を実証し、小さな分子でQDFモデルを訓練し、大きな分子でテストし、高い性能を実現した。
論文 参考訳(メタデータ) (2020-11-16T13:20:35Z) - DeepDFT: Neural Message Passing Network for Accurate Charge Density
Prediction [0.0]
DeepDFTは原子周辺の電子電荷密度を予測するためのディープラーニングモデルである。
モデルの精度とスケーラビリティは、分子、固体、液体に対して実証される。
論文 参考訳(メタデータ) (2020-11-04T16:56:08Z) - Accelerating Finite-temperature Kohn-Sham Density Functional Theory with
Deep Neural Networks [2.7035666571881856]
本稿では,コーン・シャム密度汎関数理論(DFT)による全エネルギーを有限電子温度で再現する機械学習(ML)に基づく数値モデリングワークフローを提案する。
ディープニューラルネットワークに基づいて、ワークフローは与えられた原子構成に対する状態の局所密度(LDOS)を生成する。
本研究では, 固体および液体金属に対するこのアプローチの有効性を実証し, 固体および液体アルミニウムの独立学習モデルと統一学習モデルの比較を行った。
論文 参考訳(メタデータ) (2020-10-10T05:38:03Z) - Graph Neural Network for Hamiltonian-Based Material Property Prediction [56.94118357003096]
無機材料のバンドギャップを予測できるいくつかの異なるグラフ畳み込みネットワークを提示し、比較する。
モデルは、それぞれの軌道自体の情報と相互の相互作用の2つの異なる特徴を組み込むように開発されている。
その結果,クロスバリデーションにより予測精度が期待できることがわかった。
論文 参考訳(メタデータ) (2020-05-27T13:32:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。