論文の概要: Higher-Order Equivariant Neural Networks for Charge Density Prediction in Materials
- arxiv url: http://arxiv.org/abs/2312.05388v2
- Date: Tue, 14 May 2024 15:34:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-15 19:31:02.514248
- Title: Higher-Order Equivariant Neural Networks for Charge Density Prediction in Materials
- Title(参考訳): 材料中の電荷密度予測のための高次同変ニューラルネットワーク
- Authors: Teddy Koker, Keegan Quigley, Eric Taw, Kevin Tibbetts, Lin Li,
- Abstract要約: ChargE3Netは、原子系の電子密度を予測するためのE(3)等価グラフニューラルネットワークである。
本稿では,ChargE3Netが分子や材料に対する先行研究よりも優れていることを示す。
- 参考スコア(独自算出の注目度): 3.7655047338409893
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The calculation of electron density distribution using density functional theory (DFT) in materials and molecules is central to the study of their quantum and macro-scale properties, yet accurate and efficient calculation remains a long-standing challenge. We introduce ChargE3Net, an E(3)-equivariant graph neural network for predicting electron density in atomic systems. ChargE3Net enables the learning of higher-order equivariant feature to achieve high predictive accuracy and model expressivity. We show that ChargE3Net exceeds the performance of prior work on diverse sets of molecules and materials. When trained on the massive dataset of over 100K materials in the Materials Project database, our model is able to capture the complexity and variability in the data, leading to a significant 26.7% reduction in self-consistent iterations when used to initialize DFT calculations on unseen materials. Furthermore, we show that non-self-consistent DFT calculations using our predicted charge densities yield near-DFT performance on electronic and thermodynamic property prediction at a fraction of the computational cost. Further analysis attributes the greater predictive accuracy to improved modeling of systems with high angular variations. These results illuminate a pathway towards a machine learning-accelerated ab initio calculations for materials discovery.
- Abstract(参考訳): 密度汎関数理論(DFT)を用いた電子密度分布の計算は、その量子的およびマクロスケール特性の研究の中心であるが、正確かつ効率的な計算は長年にわたる課題である。
本稿では,原子系の電子密度を予測するためのE(3)同変グラフニューラルネットワークChargE3Netを紹介する。
ChargE3Netは高次同変関数の学習を可能にし、高い予測精度とモデル表現性を実現する。
本稿では,ChargE3Netが分子や材料に対する先行研究よりも優れていることを示す。
Materials Projectデータベースにある100K以上の素材の膨大なデータセットをトレーニングすると、我々のモデルはデータの複雑さと変動を捉えることができ、未確認の材料上でDFT計算を初期化する際には、自己一貫性の反復が26.7%減少する。
さらに, 予測電荷密度を用いた非自己整合DFT計算は, 計算コストのごく一部で, 電子的および熱力学的特性予測においてほぼDFT性能が得られることを示す。
さらなる分析は、高い角度変化を持つシステムのモデリングを改善するために、予測精度がより高くなることを特徴としている。
これらの結果は、材料発見のための機械学習によって加速されたab initio計算への道筋を照らす。
関連論文リスト
- Predicting ionic conductivity in solids from the machine-learned potential energy landscape [68.25662704255433]
超イオン材料は、エネルギー密度と安全性を向上させる固体電池の推進に不可欠である。
このような物質を同定するための従来の計算手法は資源集約的であり、容易ではない。
普遍的原子間ポテンシャル解析によるイオン伝導率の迅速かつ確実な評価手法を提案する。
論文 参考訳(メタデータ) (2024-11-11T09:01:36Z) - Electronic Structure Prediction of Multi-million Atom Systems Through Uncertainty Quantification Enabled Transfer Learning [5.4875371069660925]
基底状態電子密度 -- コーン・シャム密度汎関数理論(KS-DFT)シミュレーションで得られる -- は、豊富な物質情報を含んでいる。
しかし、KS-DFTの計算コストは、トレーニングデータ生成を妨害する傾向にあるシステムサイズと3倍にスケールする。
ここでは,この基本的課題に,移動学習を用いて学習データのマルチスケールな性質を活用する。
論文 参考訳(メタデータ) (2023-08-24T21:41:29Z) - Accurate melting point prediction through autonomous physics-informed
learning [52.217497897835344]
NPTアンサンブルにおける共存シミュレーションから自律的に学習することで融点を計算するアルゴリズムを提案する。
固液共存進化の物理モデルを統合することで、アルゴリズムの精度が向上し、最適な意思決定が可能になることを実証する。
論文 参考訳(メタデータ) (2023-06-23T07:53:09Z) - Electronic-structure properties from atom-centered predictions of the
electron density [0.0]
分子や物質の電子密度は、最近機械学習モデルのターゲット量として大きな注目を集めている。
最適化された高度にスパースな特徴空間における回帰問題の損失関数を最小化するための勾配に基づく手法を提案する。
予測密度から1つのコーン・シャム対角化ステップを実行し、0.1mV/原子の誤差を持つ全エネルギー成分にアクセス可能であることを示す。
論文 参考訳(メタデータ) (2022-06-28T15:35:55Z) - Pre-training via Denoising for Molecular Property Prediction [53.409242538744444]
本稿では,3次元分子構造の大規模データセットを平衡に利用した事前学習手法について述べる。
近年のノイズレギュラー化の進展に触発されて, 事前学習の目的は, 雑音の除去に基づくものである。
論文 参考訳(メタデータ) (2022-05-31T22:28:34Z) - Prediction of the electron density of states for crystalline compounds
with Atomistic Line Graph Neural Networks (ALIGNN) [0.0]
本稿では、最近開発されたAtomistic Line Graph Neural Network(ALIGNN)を拡張して、大量の材料ユニットセル構造のDOSを正確に予測する。
本研究では, 直接離散化スペクトルと, オートエンコーダを用いた圧縮低次元表現の2つの方法を評価する。
論文 参考訳(メタデータ) (2022-01-20T18:28:22Z) - Equivariant vector field network for many-body system modeling [65.22203086172019]
Equivariant Vector Field Network (EVFN) は、新しい同変層と関連するスカラー化およびベクトル化層に基づいて構築されている。
シミュレーションされたニュートン力学系の軌跡を全観測データと部分観測データで予測する手法について検討した。
論文 参考訳(メタデータ) (2021-10-26T14:26:25Z) - Prediction of liquid fuel properties using machine learning models with
Gaussian processes and probabilistic conditional generative learning [56.67751936864119]
本研究の目的は、代替燃料の物理的特性を予測するためのクロージャ方程式として機能する、安価で計算可能な機械学習モデルを構築することである。
これらのモデルは、MDシミュレーションのデータベースや、データ融合-忠実性アプローチによる実験的な測定を用いて訓練することができる。
その結果,MLモデルでは,広範囲の圧力および温度条件の燃料特性を正確に予測できることがわかった。
論文 参考訳(メタデータ) (2021-10-18T14:43:50Z) - BIGDML: Towards Exact Machine Learning Force Fields for Materials [55.944221055171276]
機械学習力場(MLFF)は正確で、計算的で、データ効率が良く、分子、材料、およびそれらのインターフェースに適用できなければならない。
ここでは、Bravais-Inspired Gradient-Domain Machine Learningアプローチを導入し、わずか10-200原子のトレーニングセットを用いて、信頼性の高い力場を構築する能力を実証する。
論文 参考訳(メタデータ) (2021-06-08T10:14:57Z) - DeepDFT: Neural Message Passing Network for Accurate Charge Density
Prediction [0.0]
DeepDFTは原子周辺の電子電荷密度を予測するためのディープラーニングモデルである。
モデルの精度とスケーラビリティは、分子、固体、液体に対して実証される。
論文 参考訳(メタデータ) (2020-11-04T16:56:08Z) - Predicting Elastic Properties of Materials from Electronic Charge
Density Using 3D Deep Convolutional Neural Networks [5.249388761037709]
本稿では,電子電荷密度(ECD)を材料特性予測のための汎用的な3次元記述子として用いることを提案する。
ECDを用いた3次元畳み込みニューラルネットワーク(CNN)を開発し,材料の弾性特性を予測した。
論文 参考訳(メタデータ) (2020-03-17T06:21:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。