論文の概要: On the Effectiveness of Vision Transformers for Zero-shot Face
Anti-Spoofing
- arxiv url: http://arxiv.org/abs/2011.08019v2
- Date: Wed, 2 Jun 2021 10:37:30 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-25 00:32:19.993910
- Title: On the Effectiveness of Vision Transformers for Zero-shot Face
Anti-Spoofing
- Title(参考訳): zero-shot face anti-spoofing における視覚トランスフォーマーの有効性について
- Authors: Anjith George and Sebastien Marcel
- Abstract要約: 本研究では、ゼロショットアンチスプーフィングタスクにおいて、視覚変換器モデルからの伝達学習を用いる。
提案手法は、HQ-WMCAおよびSiW-Mデータセットにおけるゼロショットプロトコルにおける最先端の手法を大きなマージンで上回る。
- 参考スコア(独自算出の注目度): 7.665392786787577
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The vulnerability of face recognition systems to presentation attacks has
limited their application in security-critical scenarios. Automatic methods of
detecting such malicious attempts are essential for the safe use of facial
recognition technology. Although various methods have been suggested for
detecting such attacks, most of them over-fit the training set and fail in
generalizing to unseen attacks and environments. In this work, we use transfer
learning from the vision transformer model for the zero-shot anti-spoofing
task. The effectiveness of the proposed approach is demonstrated through
experiments in publicly available datasets. The proposed approach outperforms
the state-of-the-art methods in the zero-shot protocols in the HQ-WMCA and
SiW-M datasets by a large margin. Besides, the model achieves a significant
boost in cross-database performance as well.
- Abstract(参考訳): 顔認識システムの攻撃に対する脆弱性は、セキュリティクリティカルなシナリオでの使用を制限している。
このような悪意のある試みを検出する自動方法は、顔認識技術の安全な使用には不可欠である。
このような攻撃を検出する様々な方法が提案されているが、そのほとんどはトレーニングセットに適合し、目に見えない攻撃や環境への一般化に失敗している。
本研究では,ゼロショット・アンチスプーフィングタスクに視覚トランスフォーマーモデルからの転送学習を用いる。
提案手法の有効性は,公開データセットの実験を通じて実証される。
提案手法は,hq-wmca および siw-m データセットのゼロショットプロトコルにおける最先端メソッドを大きなマージンで上回っている。
さらにこのモデルでは、データベース間のパフォーマンスも大幅に向上している。
関連論文リスト
- Imperceptible Face Forgery Attack via Adversarial Semantic Mask [59.23247545399068]
本稿では, 対向性, 可視性に優れた対向性例を生成できるASMA(Adversarial Semantic Mask Attack framework)を提案する。
具体的には, 局所的なセマンティック領域の摂動を抑制し, 良好なステルス性を実現する, 対向型セマンティックマスク生成モデルを提案する。
論文 参考訳(メタデータ) (2024-06-16T10:38:11Z) - MirrorCheck: Efficient Adversarial Defense for Vision-Language Models [55.73581212134293]
本稿では,視覚言語モデルにおける対角的サンプル検出のための,新しい,しかしエレガントなアプローチを提案する。
本手法は,テキスト・トゥ・イメージ(T2I)モデルを用いて,ターゲットVLMが生成したキャプションに基づいて画像を生成する。
異なるデータセットで実施した経験的評価により,本手法の有効性が検証された。
論文 参考訳(メタデータ) (2024-06-13T15:55:04Z) - Contactless Fingerprint Biometric Anti-Spoofing: An Unsupervised Deep
Learning Approach [0.0]
本稿では、教師なしオートエンコーダと畳み込みブロックアテンションモジュールを組み合わせた革新的なアンチスプーフィング手法を提案する。
このスキームは平均で0.96%のBPCERを達成し、様々な種類のスプーフサンプルを含むプレゼンテーション攻撃では1.6%のAPCERを達成している。
論文 参考訳(メタデータ) (2023-11-07T17:19:59Z) - Towards Evaluating Transfer-based Attacks Systematically, Practically,
and Fairly [79.07074710460012]
ディープニューラルネットワーク(DNN)の敵対的脆弱性に大きな注目を集めている。
ブラックボックスDNNモデルを騙すための転送ベース手法が増えている。
30以上のメソッドを実装した転送ベースアタックベンチマーク(TA-Bench)を確立する。
論文 参考訳(メタデータ) (2023-11-02T15:35:58Z) - Attacking Face Recognition with T-shirts: Database, Vulnerability
Assessment and Detection [0.0]
我々は,100のユニークな提示攻撃器を用いた1,608のTシャツ攻撃の新しいTシャツ顔提示攻撃データベースを提案する。
このような攻撃は、顔認識システムのセキュリティを損なう可能性があり、いくつかの最先端の攻撃検出メカニズムが、新しい攻撃に対して堅牢に一般化できないことを示す。
論文 参考訳(メタデータ) (2022-11-14T14:11:23Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
表情認識のためのSFUDA法を提案する。
本手法は,自己教師付き事前学習を利用して,対象データから優れた特徴表現を学習する。
提案手法の有効性を4つの適応方式で検証し,FERに適用した場合,既存のSFUDA法より一貫して優れていることを示す。
論文 参考訳(メタデータ) (2022-10-11T08:24:50Z) - Attack Analysis of Face Recognition Authentication Systems Using Fast
Gradient Sign Method [0.0]
本稿では,生体認証のための顔認識を用いてFGSM攻撃を解析・提示する。
機械学習技術は、モデルのトレーニングとテストに使われており、異なる人の顔の分類と識別が可能である。
論文 参考訳(メタデータ) (2022-03-10T21:35:59Z) - MixNet for Generalized Face Presentation Attack Detection [63.35297510471997]
我々は、プレゼンテーションアタックを検出するための、TextitMixNetと呼ばれるディープラーニングベースのネットワークを提案している。
提案アルゴリズムは最先端の畳み込みニューラルネットワークアーキテクチャを利用して,各攻撃カテゴリの特徴マッピングを学習する。
論文 参考訳(メタデータ) (2020-10-25T23:01:13Z) - Detection Defense Against Adversarial Attacks with Saliency Map [7.736844355705379]
ニューラルネットワークは、人間の視覚にほとんど受容できない敵の例に弱いことがよく確認されている。
既存の防衛は、敵の攻撃に対するモデルの堅牢性を強化する傾向にある。
本稿では,新たな雑音と組み合わせた新しい手法を提案し,不整合戦略を用いて敵のサンプルを検出する。
論文 参考訳(メタデータ) (2020-09-06T13:57:17Z) - Towards Transferable Adversarial Attack against Deep Face Recognition [58.07786010689529]
ディープ畳み込みニューラルネットワーク(DCNN)は敵の例に弱いことが判明した。
転送可能な敵の例は、DCNNの堅牢性を著しく妨げます。
DFANetは畳み込み層で使用されるドロップアウトベースの手法であり,サロゲートモデルの多様性を高めることができる。
クエリなしで4つの商用APIをうまく攻撃できる新しい対向顔ペアを生成します。
論文 参考訳(メタデータ) (2020-04-13T06:44:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。