Quantum walk-based portfolio optimisation
- URL: http://arxiv.org/abs/2011.08057v3
- Date: Mon, 26 Jul 2021 13:38:16 GMT
- Title: Quantum walk-based portfolio optimisation
- Authors: N. Slate, E. Matwiejew, S. Marsh, J. B. Wang
- Abstract summary: This paper proposes a highly efficient quantum algorithm for portfolio optimisation targeted at near-term noisy intermediate-scale quantum computers.
Recent work by Hodson et al. explored potential application of hybrid quantum-classical algorithms to the problem of financial portfolio rebalancing.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper proposes a highly efficient quantum algorithm for portfolio
optimisation targeted at near-term noisy intermediate-scale quantum computers.
Recent work by Hodson et al. (2019) explored potential application of hybrid
quantum-classical algorithms to the problem of financial portfolio rebalancing.
In particular, they deal with the portfolio optimisation problem using the
Quantum Approximate Optimisation Algorithm and the Quantum Alternating Operator
Ansatz. In this paper, we demonstrate substantially better performance using a
newly developed Quantum Walk Optimisation Algorithm in finding high-quality
solutions to the portfolio optimisation problem.
Related papers
- PO-QA: A Framework for Portfolio Optimization using Quantum Algorithms [4.2435928520499635]
Portfolio Optimization (PO) is a financial problem aiming to maximize the net gains while minimizing the risks in a given investment portfolio.
We propose a novel scalable framework, denoted PO-QA, to investigate the variation of quantum parameters.
Our results provide effective insights into comprehending PO from the lens of Quantum Machine Learning.
arXiv Detail & Related papers (2024-07-29T10:26:28Z) - Harnessing Inferior Solutions For Superior Outcomes: Obtaining Robust Solutions From Quantum Algorithms [0.0]
We adapt quantum algorithms to tackle robust optimization problems.
We present two innovative methods for obtaining robust optimal solutions.
Theses are applied on two use cases within the energy sector.
arXiv Detail & Related papers (2024-04-25T17:32:55Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - A Novel Knapsack-based Financial Portfolio Optimization using Quantum Approximate Optimization Algorithm [2.6603181502541986]
We propose a method that uses the quantum computing capabilities of the quantum walk mixer with the quantum approximate optimization algorithm (QAOA) to address the challenges presented by the NP-hard problem.
Our study successfully achieves the approximate ratio of the portfolio optimization technique using a circuit layer of p >= 3, compared to the classical best-known solution of the knapsack problem.
arXiv Detail & Related papers (2024-02-11T08:20:26Z) - Randomized Benchmarking of Local Zeroth-Order Optimizers for Variational
Quantum Systems [65.268245109828]
We compare the performance of classicals across a series of partially-randomized tasks.
We focus on local zeroth-orders due to their generally favorable performance and query-efficiency on quantum systems.
arXiv Detail & Related papers (2023-10-14T02:13:26Z) - A Review on Quantum Approximate Optimization Algorithm and its Variants [47.89542334125886]
The Quantum Approximate Optimization Algorithm (QAOA) is a highly promising variational quantum algorithm that aims to solve intractable optimization problems.
This comprehensive review offers an overview of the current state of QAOA, encompassing its performance analysis in diverse scenarios.
We conduct a comparative study of selected QAOA extensions and variants, while exploring future prospects and directions for the algorithm.
arXiv Detail & Related papers (2023-06-15T15:28:12Z) - Finding the Optimal Currency Composition of Foreign Exchange Reserves
with a Quantum Computer [0.0]
This paper focuses on applications of quantum algorithms to dynamic portfolio optimization based on the Markowitz model.
To run the quantum algorithms we use the IBM QuantumtextsuperscriptTM gate-based quantum computer.
A secondary goal of the paper is to provide staff of central banks and other financial market regulators with literature on quantum optimization algorithms.
arXiv Detail & Related papers (2023-03-03T13:19:07Z) - Evaluating the Convergence of Tabu Enhanced Hybrid Quantum Optimization [58.720142291102135]
We introduce the Tabu Enhanced Hybrid Quantum Optimization metaheuristic approach useful for optimization problem solving on a quantum hardware.
We address the theoretical convergence of the proposed scheme from the viewpoint of the collisions in the object which stores the tabu states, based on the Ising model.
arXiv Detail & Related papers (2022-09-05T07:23:03Z) - A Quantum Online Portfolio Optimization Algorithm [0.0]
We give a sampling version of an existing classical online portfolio optimization algorithm by Helmbold et al., for which we in turn develop a quantum version.
The quantum advantage is achieved by using techniques such as quantum state preparation and inner product estimation.
Our quantum algorithm provides a quadratic speedup in the time complexity, in terms of $n$, where $n$ is the number of assets in the portfolio.
arXiv Detail & Related papers (2022-08-31T09:51:32Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.