論文の概要: Laserless quantum gates for electric dipoles in thermal motion
- arxiv url: http://arxiv.org/abs/2011.08330v1
- Date: Mon, 16 Nov 2020 23:22:45 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-23 23:24:00.340347
- Title: Laserless quantum gates for electric dipoles in thermal motion
- Title(参考訳): 熱運動中の電気双極子に対する無レーザー量子ゲート
- Authors: Eric R. Hudson and Wesley C. Campbell
- Abstract要約: 極性分子の内部状態はマイクロ波電気双極子遷移によって制御できる。
この能力はフォノンを介する極性分子イオン量子ビット間の量子ゲートを設計するのに利用できる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Internal states of polar molecules can be controlled by microwave-frequency
electric dipole transitions. If the applied microwave electric field has a
spatial gradient, these transitions also affect the motion of these dipolar
particles. This capability can be used to engineer phonon-mediated quantum
gates between e.g. trapped polar molecular ion qubits without laser
illumination and without the need for cooling near the motional ground state.
The result is a high-speed quantum processing toolbox for dipoles in thermal
motion that combines the precision microwave control of solid-state qubits with
the long coherence times of trapped ion qubits.
- Abstract(参考訳): 極性分子の内部状態はマイクロ波電気双極子遷移によって制御できる。
印加されたマイクロ波電場が空間勾配を持つ場合、これらの遷移はこれらの双極子粒子の運動にも影響を及ぼす。
この能力はフォノンを媒介とする量子ゲートをレーザーを照射することなく、動きの基底状態の近くで冷却する必要のない極性分子イオン量子ビット間で設計するのに使うことができる。
その結果、固体量子ビットの精密マイクロ波制御と捕捉イオン量子ビットの長いコヒーレンス時間を組み合わせた熱運動双極子のための高速量子処理ツールボックスが誕生した。
関連論文リスト
- An anti-maser for quantum-limited cooling of a microwave cavity [58.720142291102135]
低温下で凝縮物の状態を生成する方法の実験的検討を行った。
この状態は、空洞からマイクロ波光子を効率的に除去するために使用される。
このような「アンチメーザー」デバイスは、ミリケルビン温度への冷却を必要とするアプリケーションにとって非常に有益である可能性がある。
論文 参考訳(メタデータ) (2023-07-24T11:12:29Z) - Sensitive detection of millimeter wave electric field by driving trapped
surface-state electrons [16.155892979947115]
ミリ波の電界を感度的に検出する量子センサを提案する。
量子センサーは、液体ヘリウム上に個別に閉じ込められた多くの表面状態電子から構成される。
印加されたミリ波の電場は、液体ヘリウムに閉じ込められた電子の長寿命スピン状態のスピン-エチョ干渉計を用いて、感度よく検出できる。
論文 参考訳(メタデータ) (2023-04-11T11:43:58Z) - Bound state of distant photons in waveguide quantum electrodynamics [137.6408511310322]
遠い粒子間の量子相関は、量子力学の誕生以来謎のままである。
箱の中の2つの相互作用する粒子の最も単純な1次元のセットアップにおいて、新しい種類の有界量子状態を予測する。
このような状態は導波路量子電磁力学プラットフォームで実現できる。
論文 参考訳(メタデータ) (2023-03-17T09:27:02Z) - Coherent optical control of a superconducting microwave cavity via
electro-optical dynamical back-action [0.0]
超伝導マイクロ波回路の量子光学制御は、これまでのところ、弱い電気-光学結合のために禁止されている。
ミリケルビン温度の多モード電気光学デバイスにおけるレーザパルスを用いた超伝導マイクロ波空洞のコヒーレント制御について報告する。
論文 参考訳(メタデータ) (2022-10-22T13:21:48Z) - Slowing down light in a qubit metamaterial [98.00295925462214]
マイクロ波領域の超伝導回路は 未だにそのような装置を欠いている
共振導波路に結合した8量子ビットからなる超伝導メタマテリアルにおいて、電磁波の減速を実証した。
本研究は, 超伝導回路の高柔軟性を実証し, カスタムバンド構造を実現することを目的とした。
論文 参考訳(メタデータ) (2022-02-14T20:55:10Z) - Engineering the Radiative Dynamics of Thermalized Excitons with Metal
Interfaces [58.720142291102135]
平面金属界面近傍のTMDCにおける励起子の発光特性を解析した。
点双極子の場合に対する放出の抑制または増強は、数桁のオーダーで達成される。
ナノスケールの光学キャビティは、TMDCの長寿命エキシトン状態を生成するための有効な経路である。
論文 参考訳(メタデータ) (2021-10-11T19:40:24Z) - Sympathetic cooling of a trapped proton mediated by an LC circuit [0.0]
空間分離したペニングトラップにおいて,レーザー冷却したBe+イオンを用いた単一陽子の共振冷却を実証した。
この技術はイメージ・カレント・インタラクションのみを使用するため、アンチプロトンを用いた実験にも容易に適用できる。
論文 参考訳(メタデータ) (2021-08-29T00:48:25Z) - Quantum-enabled interface between microwave and telecom light [0.0]
この研究は、超伝導キャビティモードのレーザー冷却のような一様内部効率と非線形効果を特徴とする強い結合性キャビティ量子電気光学の体制に入る。
C_q>10$の高量子協調性は超伝導回路と光の間の決定論的絡み合い発生の基礎を形成する。
論文 参考訳(メタデータ) (2021-07-17T19:07:27Z) - Quantum coherent spin-electric control in a molecular nanomagnet at
clock transitions [57.50861918173065]
ナノスケールでのスピンの電気的制御は、スピントロニクスのアーキテクチャ上の利点を提供する。
分子スピン材料における電場(E-場)感度の最近の実証が注目されている。
これまでに報告された電子場感度はかなり弱く、より強いスピン電結合を持つ分子をどうやって設計するかという問題を引き起こした。
論文 参考訳(メタデータ) (2020-05-03T09:27:31Z) - Optimal coupling of HoW$_{10}$ molecular magnets to superconducting
circuits near spin clock transitions [85.83811987257297]
我々は,HoW$_10$磁性クラスターの純および磁性希釈結晶とマイクロ波超伝導コプラナー導波路とのカップリングについて検討した。
以上の結果から, 分子系のスピン時計状態は, スピン光子相互作用の大きさと, 不要な磁気ノイズ源からの十分な分離を両立させる, 有望な戦略であることがわかった。
論文 参考訳(メタデータ) (2019-11-18T11:03:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。