論文の概要: Curriculum CycleGAN for Textual Sentiment Domain Adaptation with
Multiple Sources
- arxiv url: http://arxiv.org/abs/2011.08678v2
- Date: Thu, 18 Feb 2021 01:22:50 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-24 15:45:54.249775
- Title: Curriculum CycleGAN for Textual Sentiment Domain Adaptation with
Multiple Sources
- Title(参考訳): 複数音源によるテキスト知覚領域適応のためのカリキュラムサイクルGAN
- Authors: Sicheng Zhao, Yang Xiao, Jiang Guo, Xiangyu Yue, Jufeng Yang, Ravi
Krishna, Pengfei Xu, Kurt Keutzer
- Abstract要約: 我々は,C-CycleGAN(C-CycleGAN)という,新しいインスタンスレベルのMDAフレームワークを提案する。
C-CycleGANは、(1)異なるドメインからのテキスト入力を連続的な表現空間にエンコードする事前訓練されたテキストエンコーダ、(2)ソースとターゲットドメイン間のギャップを埋めるカリキュラムインスタンスレベルの適応を伴う中間ドメインジェネレータ、(3)中間ドメインで最終感情分類のために訓練されたタスク分類器の3つのコンポーネントから構成される。
3つのベンチマークデータセットに対して広範な実験を行い、最先端のDAアプローチよりも大幅に向上した。
- 参考スコア(独自算出の注目度): 68.31273535702256
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sentiment analysis of user-generated reviews or comments on products and
services in social networks can help enterprises to analyze the feedback from
customers and take corresponding actions for improvement. To mitigate
large-scale annotations on the target domain, domain adaptation (DA) provides
an alternate solution by learning a transferable model from other labeled
source domains. Existing multi-source domain adaptation (MDA) methods either
fail to extract some discriminative features in the target domain that are
related to sentiment, neglect the correlations of different sources and the
distribution difference among different sub-domains even in the same source, or
cannot reflect the varying optimal weighting during different training stages.
In this paper, we propose a novel instance-level MDA framework, named
curriculum cycle-consistent generative adversarial network (C-CycleGAN), to
address the above issues. Specifically, C-CycleGAN consists of three
components: (1) pre-trained text encoder which encodes textual input from
different domains into a continuous representation space, (2) intermediate
domain generator with curriculum instance-level adaptation which bridges the
gap across source and target domains, and (3) task classifier trained on the
intermediate domain for final sentiment classification. C-CycleGAN transfers
source samples at instance-level to an intermediate domain that is closer to
the target domain with sentiment semantics preserved and without losing
discriminative features. Further, our dynamic instance-level weighting
mechanisms can assign the optimal weights to different source samples in each
training stage. We conduct extensive experiments on three benchmark datasets
and achieve substantial gains over state-of-the-art DA approaches. Our source
code is released at: https://github.com/WArushrush/Curriculum-CycleGAN.
- Abstract(参考訳): ソーシャルネットワークの製品やサービスに対するユーザー生成レビューやコメントの感情分析は、企業が顧客からのフィードバックを分析し、改善のための対応行動を取るのに役立つ。
対象ドメインの大規模アノテーションを緩和するために、ドメイン適応(da)は、他のラベル付きソースドメインから転送可能なモデルを学習することで代替ソリューションを提供する。
既存のマルチソースドメイン適応(MDA)手法は、感情に関連する対象ドメインの識別的特徴を抽出できず、異なるソースの相関や、同じソースであっても異なるサブドメイン間の分布の違いを無視したり、異なるトレーニング段階における最適な重み付けを反映できない。
本稿では,上記の問題に対処するために,c-cyclegan(c-cyclegan)と呼ばれる,新しいインスタンスレベルのmdaフレームワークを提案する。
具体的には、(1)異なるドメインからのテキスト入力を連続的な表現空間に符号化する事前訓練されたテキストエンコーダ、(2)ソースとターゲットドメイン間のギャップを埋めるカリキュラムインスタンスレベルの適応を伴う中間ドメインジェネレータ、(3)最終感情分類のために中間ドメインで訓練されたタスク分類器である。
C-CycleGANは、ソースサンプルを、感情的セマンティクスが保存され、識別的特徴を失うことなく、ターゲットドメインに近い中間ドメインに、インスタンスレベルで転送する。
さらに、動的インスタンスレベルの重み付け機構は、各トレーニングステージの異なるソースサンプルに最適な重み付けを割り当てることができます。
3つのベンチマークデータセットに対して広範な実験を行い、最先端のDAアプローチよりも大幅に向上した。
ソースコードは、https://github.com/WArushrush/Curriculum-CycleGAN.comで公開されています。
関連論文リスト
- SIDE: Self-supervised Intermediate Domain Exploration for Source-free
Domain Adaptation [36.470026809824674]
ドメイン適応は、ソースドメインからターゲットドメインに学習した知識を転送する際に、ドメインシフトを軽減することを目的としています。
プライバシの問題により、ソースフリードメイン適応(SFDA)は、最近非常に要求される一方で難しいものになっている。
本稿では、ドメインギャップを効果的に中間ドメインにブリッジする自己教師付き中間ドメイン探索(SIDE)を提案する。
論文 参考訳(メタデータ) (2023-10-13T07:50:37Z) - Compositional Semantic Mix for Domain Adaptation in Point Cloud
Segmentation [65.78246406460305]
合成意味混合は、ポイントクラウドセグメンテーションのための最初の教師なし領域適応技術である。
本稿では、ソースドメイン(例えば合成)からの点雲とターゲットドメイン(例えば実世界)からの点雲を同時に処理できる2分岐対称ネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-08-28T14:43:36Z) - Instance Level Affinity-Based Transfer for Unsupervised Domain
Adaptation [74.71931918541748]
ILA-DAと呼ばれる適応中のソースからターゲットへの転送に対するインスタンス親和性に基づく基準を提案する。
まず、ソースとターゲットをまたいだ類似および異種サンプルを抽出し、マルチサンプルのコントラスト損失を利用してドメインアライメントプロセスを駆動する信頼性が高く効率的な手法を提案する。
ILA-DAの有効性は、様々なベンチマークデータセットに対する一般的なドメイン適応手法よりも精度が一貫した改善を観察することによって検証する。
論文 参考訳(メタデータ) (2021-04-03T01:33:14Z) - Multi-Source Domain Adaptation with Collaborative Learning for Semantic
Segmentation [32.95273803359897]
マルチソース非監視ドメイン適応(MSDA)は、複数のラベル付きソースドメインで訓練されたモデルをラベル付きターゲットドメインに適応することを目的とする。
セマンティックセグメンテーションのための協調学習に基づく新しいマルチソースドメイン適応フレームワークを提案する。
論文 参考訳(メタデータ) (2021-03-08T12:51:42Z) - Mutual Learning Network for Multi-Source Domain Adaptation [73.25974539191553]
ML-MSDA(Multial Learning Network for Multiple Source Domain Adaptation)を提案する。
相互学習の枠組みのもと,提案手法は対象ドメインと各ソースドメインをペアリングし,条件付き対向ドメイン適応ネットワークを分岐ネットワークとして訓練する。
提案手法は, 比較手法より優れ, 最先端の性能を実現する。
論文 参考訳(メタデータ) (2020-03-29T04:31:43Z) - MADAN: Multi-source Adversarial Domain Aggregation Network for Domain
Adaptation [58.38749495295393]
ドメイン適応は、あるラベル付きソースドメインと、わずかにラベル付けまたはラベル付けされていないターゲットドメインの間のドメインシフトをブリッジするために、転送可能なモデルを学ぶことを目的としています。
近年のマルチソース領域適応法(MDA)では,ソースとターゲット間の画素レベルのアライメントは考慮されていない。
これらの課題に対処するための新しいMDAフレームワークを提案する。
論文 参考訳(メタデータ) (2020-02-19T21:22:00Z) - Multi-source Domain Adaptation for Visual Sentiment Classification [92.53780541232773]
マルチソース・ドメイン適応(MDA)手法をMSGAN(Multi-source Sentiment Generative Adversarial Network)と呼ぶ。
複数のソースドメインからのデータを扱うために、MSGANはソースドメインとターゲットドメインの両方のデータが同じ分布を共有する、統一された感情潜在空間を見つけることを学ぶ。
4つのベンチマークデータセットで実施された大規模な実験により、MSGANは視覚的感情分類のための最先端のMDAアプローチよりも大幅に優れていることが示された。
論文 参考訳(メタデータ) (2020-01-12T08:37:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。