論文の概要: Compositional Semantic Mix for Domain Adaptation in Point Cloud
Segmentation
- arxiv url: http://arxiv.org/abs/2308.14619v2
- Date: Tue, 29 Aug 2023 09:16:48 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-30 10:55:35.241273
- Title: Compositional Semantic Mix for Domain Adaptation in Point Cloud
Segmentation
- Title(参考訳): 点雲セグメンテーションにおける領域適応のための構成意味混合
- Authors: Cristiano Saltori and Fabio Galasso and Giuseppe Fiameni and Nicu Sebe
and Fabio Poiesi and Elisa Ricci
- Abstract要約: 合成意味混合は、ポイントクラウドセグメンテーションのための最初の教師なし領域適応技術である。
本稿では、ソースドメイン(例えば合成)からの点雲とターゲットドメイン(例えば実世界)からの点雲を同時に処理できる2分岐対称ネットワークアーキテクチャを提案する。
- 参考スコア(独自算出の注目度): 65.78246406460305
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep-learning models for 3D point cloud semantic segmentation exhibit limited
generalization capabilities when trained and tested on data captured with
different sensors or in varying environments due to domain shift. Domain
adaptation methods can be employed to mitigate this domain shift, for instance,
by simulating sensor noise, developing domain-agnostic generators, or training
point cloud completion networks. Often, these methods are tailored for range
view maps or necessitate multi-modal input. In contrast, domain adaptation in
the image domain can be executed through sample mixing, which emphasizes input
data manipulation rather than employing distinct adaptation modules. In this
study, we introduce compositional semantic mixing for point cloud domain
adaptation, representing the first unsupervised domain adaptation technique for
point cloud segmentation based on semantic and geometric sample mixing. We
present a two-branch symmetric network architecture capable of concurrently
processing point clouds from a source domain (e.g. synthetic) and point clouds
from a target domain (e.g. real-world). Each branch operates within one domain
by integrating selected data fragments from the other domain and utilizing
semantic information derived from source labels and target (pseudo) labels.
Additionally, our method can leverage a limited number of human point-level
annotations (semi-supervised) to further enhance performance. We assess our
approach in both synthetic-to-real and real-to-real scenarios using LiDAR
datasets and demonstrate that it significantly outperforms state-of-the-art
methods in both unsupervised and semi-supervised settings.
- Abstract(参考訳): 3Dポイントクラウドセマンティックセグメンテーションのためのディープラーニングモデルは、異なるセンサーでキャプチャされたデータやドメインシフトによるさまざまな環境でのトレーニングとテストにおいて、限定的な一般化能力を示す。
ドメイン適応手法は、例えば、センサノイズのシミュレーション、ドメインに依存しないジェネレータの開発、あるいはトレーニングポイントクラウド補完ネットワークによって、このドメインシフトを軽減するために使用できる。
これらの手法は、レンジビューマップやマルチモーダル入力を必要とする場合が多い。
対照的に、画像領域におけるドメイン適応は、異なる適応モジュールを使用するのではなく、入力データ操作を強調するサンプルミキシングによって実行される。
本研究では,ポイントクラウド領域適応のための合成的意味的混合を導入し,意味的および幾何学的サンプル混合に基づくポイントクラウドセグメンテーションのための最初の教師なし領域適応手法を示す。
本稿では,ソースドメイン(例えば合成)からポイントクラウドを同時処理し,ターゲットドメイン(例えば実世界)からポイントクラウドを同時処理可能な双方向対称ネットワークアーキテクチャを提案する。
各ブランチは、他のドメインから選択されたデータフラグメントを統合し、ソースラベルとターゲット(擬似)ラベルから派生したセマンティック情報を利用する。
さらに、この手法は限られた数の人間用ポイントレベルアノテーション(semi-supervised)を活用でき、さらなる性能向上が図れる。
我々は、LiDARデータセットを用いて、合成と実の両方のシナリオにおけるアプローチを評価し、教師なしと半教師なしの両方で最先端の手法を著しく上回ることを示す。
関連論文リスト
- A Pairwise DomMix Attentive Adversarial Network for Unsupervised Domain Adaptive Object Detection [18.67853854539245]
教師なしドメイン適応オブジェクト検出(DAOD)は、ソースドメインでトレーニングされたモデルを未ラベルのターゲットドメインに適応させ、オブジェクト検出を行う。
本稿では,上記の課題を軽減するために,Domain Mixup (DomMix) モジュールを用いた対角対向ネットワークを提案する。
論文 参考訳(メタデータ) (2024-07-03T06:25:20Z) - Bidirectional Domain Mixup for Domain Adaptive Semantic Segmentation [73.3083304858763]
本稿では,ドメイン適応型セマンティックセグメンテーションタスクにおけるミックスアップの影響を系統的に研究する。
具体的には、ドメインミックスアップをカットとペーストという2ステップで実現します。
フレームワークの主なコンポーネントを実証的に検証するために、広範囲にわたるアブレーション実験を行います。
論文 参考訳(メタデータ) (2023-03-17T05:22:44Z) - Unsupervised Domain Adaptation for Point Cloud Semantic Segmentation via
Graph Matching [14.876681993079062]
本稿では,2つの領域間の局所的な特徴アライメントを探索するグラフベースのフレームワークを提案する。
また、カテゴリー誘導型コントラスト損失を定式化し、セグメント化モデルを誘導し、対象領域における識別的特徴を学習する。
論文 参考訳(メタデータ) (2022-08-09T02:30:15Z) - Cross-domain Contrastive Learning for Unsupervised Domain Adaptation [108.63914324182984]
教師なしドメイン適応(Unsupervised domain adapt、UDA)は、完全にラベル付けされたソースドメインから異なるラベル付けされていないターゲットドメインに学習した知識を転送することを目的としている。
対照的な自己教師型学習に基づいて、トレーニングとテストセット間のドメインの相違を低減するために、機能を整列させます。
論文 参考訳(メタデータ) (2021-06-10T06:32:30Z) - AFAN: Augmented Feature Alignment Network for Cross-Domain Object
Detection [90.18752912204778]
オブジェクト検出のための教師なしドメイン適応は、多くの現実世界のアプリケーションにおいて難しい問題である。
本稿では、中間領域画像生成とドメイン・アドバイザリー・トレーニングを統合した新しい機能アライメント・ネットワーク(AFAN)を提案する。
提案手法は、類似および異種ドメイン適応の双方において、標準ベンチマークにおける最先端の手法よりも大幅に優れている。
論文 参考訳(メタデータ) (2021-06-10T05:01:20Z) - Multi-Source Domain Adaptation with Collaborative Learning for Semantic
Segmentation [32.95273803359897]
マルチソース非監視ドメイン適応(MSDA)は、複数のラベル付きソースドメインで訓練されたモデルをラベル付きターゲットドメインに適応することを目的とする。
セマンティックセグメンテーションのための協調学習に基づく新しいマルチソースドメイン適応フレームワークを提案する。
論文 参考訳(メタデータ) (2021-03-08T12:51:42Z) - Cross-Domain Grouping and Alignment for Domain Adaptive Semantic
Segmentation [74.3349233035632]
深層畳み込みニューラルネットワーク(CNN)内のソースドメインとターゲットドメインにセマンティックセグメンテーションネットワークを適用する既存の技術は、対象ドメイン自身や推定カテゴリ内のクラス間変異を考慮していない。
学習可能なクラスタリングモジュールと、クロスドメイングルーピングとアライメントと呼ばれる新しいドメイン適応フレームワークを導入する。
本手法はセマンティクスセグメンテーションにおける適応性能を一貫して向上させ,様々なドメイン適応設定において最先端を上回っている。
論文 参考訳(メタデータ) (2020-12-15T11:36:21Z) - Curriculum CycleGAN for Textual Sentiment Domain Adaptation with
Multiple Sources [68.31273535702256]
我々は,C-CycleGAN(C-CycleGAN)という,新しいインスタンスレベルのMDAフレームワークを提案する。
C-CycleGANは、(1)異なるドメインからのテキスト入力を連続的な表現空間にエンコードする事前訓練されたテキストエンコーダ、(2)ソースとターゲットドメイン間のギャップを埋めるカリキュラムインスタンスレベルの適応を伴う中間ドメインジェネレータ、(3)中間ドメインで最終感情分類のために訓練されたタスク分類器の3つのコンポーネントから構成される。
3つのベンチマークデータセットに対して広範な実験を行い、最先端のDAアプローチよりも大幅に向上した。
論文 参考訳(メタデータ) (2020-11-17T14:50:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。