論文の概要: Fault-Aware Robust Control via Adversarial Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2011.08728v2
- Date: Mon, 30 Nov 2020 06:30:25 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-24 17:49:30.655624
- Title: Fault-Aware Robust Control via Adversarial Reinforcement Learning
- Title(参考訳): 逆強化学習によるフォールトアウェアロバスト制御
- Authors: Fan Yang, Chao Yang, Di Guo, Huaping Liu, Fuchun Sun
- Abstract要約: 本稿では, 関節損傷症例に対するロボットの脆弱性を大幅に向上させる, 対向強化学習フレームワークを提案する。
我々は,本アルゴリズムを3本指ロボットと4本指ロボットで検証する。
我々のアルゴリズムはシミュレーションでのみ訓練でき、微調整なしで実際のロボットに直接展開できる。
- 参考スコア(独自算出の注目度): 35.16413579212691
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Robots have limited adaptation ability compared to humans and animals in the
case of damage. However, robot damages are prevalent in real-world
applications, especially for robots deployed in extreme environments. The
fragility of robots greatly limits their widespread application. We propose an
adversarial reinforcement learning framework, which significantly increases
robot robustness over joint damage cases in both manipulation tasks and
locomotion tasks. The agent is trained iteratively under the joint damage cases
where it has poor performance. We validate our algorithm on a three-fingered
robot hand and a quadruped robot. Our algorithm can be trained only in
simulation and directly deployed on a real robot without any fine-tuning. It
also demonstrates exceeding success rates over arbitrary joint damage cases.
- Abstract(参考訳): ロボットは損傷の場合、人間や動物に比べて適応能力に制限がある。
しかし、ロボットの損傷は現実のアプリケーション、特に極端な環境に配備されたロボットに多い。
ロボットの脆弱さは適用範囲を大幅に制限する。
本稿では,操作作業と移動作業の両方において,関節損傷に対するロボットの堅牢性を大幅に向上させる対向強化学習フレームワークを提案する。
エージェントは、性能が劣る関節損傷症例において反復的に訓練される。
我々は,本アルゴリズムを3本指ロボットと4本指ロボットで検証する。
我々のアルゴリズムはシミュレーションのみで訓練でき、微調整なしで実際のロボットに直接展開できる。
また、任意の関節損傷例よりも成功率が高いことも示している。
関連論文リスト
- HumanoidBench: Simulated Humanoid Benchmark for Whole-Body Locomotion and Manipulation [50.616995671367704]
そこで本研究では,人型ロボットが器用な手を備えた,高次元シミュレーション型ロボット学習ベンチマークHumanoidBenchを提案する。
その結果,現在最先端の強化学習アルゴリズムがほとんどのタスクに支障をきたすのに対して,階層的学習アプローチはロバストな低レベルポリシーに支えられた場合,優れた性能を達成できることがわかった。
論文 参考訳(メタデータ) (2024-03-15T17:45:44Z) - Pedipulate: Enabling Manipulation Skills using a Quadruped Robot's Leg [11.129918951736052]
脚のついたロボットは、メンテナンス、ホームサポート、探索のシナリオにおいて不可欠になる可能性がある。
本研究では,ロボットの脚を操作に用いたペディピュレーションについて検討する。
論文 参考訳(メタデータ) (2024-02-16T17:20:45Z) - ImitationNet: Unsupervised Human-to-Robot Motion Retargeting via Shared Latent Space [9.806227900768926]
本稿では,ロボットの動きに対する新しいディープラーニング手法を提案する。
本手法では,新しいロボットへの翻訳を容易にする,人間とロボットのペアデータを必要としない。
我々のモデルは、効率と精度の観点から、人間とロボットの類似性に関する既存の研究よりも優れています。
論文 参考訳(メタデータ) (2023-09-11T08:55:04Z) - Giving Robots a Hand: Learning Generalizable Manipulation with
Eye-in-Hand Human Video Demonstrations [66.47064743686953]
眼内カメラは、視覚に基づくロボット操作において、より優れたサンプル効率と一般化を可能にすることを約束している。
一方、人間がタスクを行うビデオは、ロボット遠隔操作の専門知識を欠いているため、収集コストがずっと安い。
本研究では,広範にラベルのない人間ビデオによるロボット模倣データセットを拡張し,眼球運動ポリシーの一般化を大幅に促進する。
論文 参考訳(メタデータ) (2023-07-12T07:04:53Z) - GenLoco: Generalized Locomotion Controllers for Quadrupedal Robots [87.32145104894754]
四足歩行ロボットのための汎用ロコモーション(GenLoco)コントローラを訓練するためのフレームワークを提案する。
本フレームワークは,多種多様な四足歩行ロボットに展開可能な汎用ロコモーションコントローラを合成する。
我々のモデルは、より一般的な制御戦略を取得し、新しいシミュレーションロボットや実世界のロボットに直接移行できることを示す。
論文 参考訳(メタデータ) (2022-09-12T15:14:32Z) - Robot Vitals and Robot Health: Towards Systematically Quantifying
Runtime Performance Degradation in Robots Under Adverse Conditions [2.0625936401496237]
ロボットバイタル」とは、ロボットが直面する性能劣化の程度を推定する指標である。
ロボット健康」とは、ロボットのバイタルを1つのスカラー値に組み合わせ、性能劣化を推定する指標である。
論文 参考訳(メタデータ) (2022-07-04T19:26:13Z) - Fleet-DAgger: Interactive Robot Fleet Learning with Scalable Human
Supervision [72.4735163268491]
ロボットの商業的および産業的な展開は、実行中にリモートの人間のテレオペレーターにフォールバックすることが多い。
我々は対話型フリートラーニング(Interactive Fleet Learning, IFL)の設定を定式化し、複数のロボットが対話型クエリを行い、複数の人間スーパーバイザーから学習する。
IFLアルゴリズムのファミリーであるFleet-DAggerを提案し、新しいFleet-DAggerアルゴリズムをシミュレーションで4つのベースラインと比較する。
論文 参考訳(メタデータ) (2022-06-29T01:23:57Z) - Adversarial joint attacks on legged robots [3.480626767752489]
深部強化学習によって訓練された脚付きロボットの関節におけるアクチュエータに対する敵攻撃について検討する。
本研究では,アクチュエータのトルク制御信号に対する逆方向の摂動が,ロボットの報酬を著しく低減し,歩行不安定を生じさせることを示す。
論文 参考訳(メタデータ) (2022-05-20T11:30:23Z) - Revisiting the Adversarial Robustness-Accuracy Tradeoff in Robot
Learning [121.9708998627352]
近年の研究では、現実的なロボット学習の応用において、対人訓練の効果が公平なトレードオフを起こさないことが示されている。
本研究は,ロボット学習におけるロバストネスと精度のトレードオフを再考し,最近のロバストトレーニング手法と理論の進歩により,現実のロボット応用に適した対人トレーニングが可能かどうかを解析する。
論文 参考訳(メタデータ) (2022-04-15T08:12:15Z) - A Transferable Legged Mobile Manipulation Framework Based on Disturbance
Predictive Control [15.044159090957292]
四足歩行ロボットにロボットアームを装着した足の移動操作は、ロボットの性能を大幅に向上させる。
本稿では,潜在動的アダプタを用いた強化学習スキームを低レベルコントローラに組み込んだ統合フレームワーク外乱予測制御を提案する。
論文 参考訳(メタデータ) (2022-03-02T14:54:10Z) - REvolveR: Continuous Evolutionary Models for Robot-to-robot Policy
Transfer [57.045140028275036]
本研究では,運動学や形態学など,異なるパラメータを持つ2つの異なるロボット間でポリシーを伝達する問題を考察する。
模倣学習手法を含む動作や状態遷移の分布を一致させることで、新しいポリシーを訓練する既存のアプローチは、最適な動作や/または状態分布が異なるロボットでミスマッチしているために失敗する。
本稿では,物理シミュレータに実装されたロボット政策伝達に連続的進化モデルを用いることで,$RevolveR$という新しい手法を提案する。
論文 参考訳(メタデータ) (2022-02-10T18:50:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。