論文の概要: Facial Expressions as a Vulnerability in Face Recognition
- arxiv url: http://arxiv.org/abs/2011.08809v2
- Date: Fri, 18 Jun 2021 08:27:24 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-24 17:06:26.350818
- Title: Facial Expressions as a Vulnerability in Face Recognition
- Title(参考訳): 顔認識の脆弱性としての表情
- Authors: Alejandro Pe\~na and Ignacio Serna and Aythami Morales and Julian
Fierrez and Agata Lapedriza
- Abstract要約: 本研究では,顔認識システムのセキュリティ脆弱性としての表情バイアスについて検討する。
本稿では,表情バイアスが顔認識技術の性能に与える影響を包括的に分析する。
- 参考スコア(独自算出の注目度): 73.85525896663371
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This work explores facial expression bias as a security vulnerability of face
recognition systems. Despite the great performance achieved by state-of-the-art
face recognition systems, the algorithms are still sensitive to a large range
of covariates. We present a comprehensive analysis of how facial expression
bias impacts the performance of face recognition technologies. Our study
analyzes: i) facial expression biases in the most popular face recognition
databases; and ii) the impact of facial expression in face recognition
performances. Our experimental framework includes two face detectors, three
face recognition models, and three different databases. Our results demonstrate
a huge facial expression bias in the most widely used databases, as well as a
related impact of face expression in the performance of state-of-the-art
algorithms. This work opens the door to new research lines focused on
mitigating the observed vulnerability.
- Abstract(参考訳): 本研究は,顔認識システムのセキュリティ脆弱性として,表情バイアスを探求する。
最先端の顔認識システムによって達成された優れた性能にもかかわらず、アルゴリズムは依然として幅広い共変量に敏感である。
本稿では,表情バイアスが顔認識技術の性能に与える影響を包括的に分析する。
私たちの研究は
一 最も人気のある顔認識データベースにおける表情バイアス
二 顔認識性能における表情の影響
実験フレームワークには,2つの顔検出器,3つの顔認識モデル,3つの異なるデータベースが含まれる。
以上より,最も広く使われているデータベースにおいて,表情の偏りが大きいこと,最先端アルゴリズムの性能における表情の影響が示唆された。
この研究は、観測された脆弱性を緩和することに焦点を当てた新しい研究ラインへの扉を開く。
関連論文リスト
- Exploring Decision-based Black-box Attacks on Face Forgery Detection [53.181920529225906]
顔の偽造生成技術は鮮明な顔を生み出し、セキュリティとプライバシーに対する世間の懸念を高めている。
顔偽造検出は偽の顔の識別に成功しているが、最近の研究では顔偽造検出は敵の例に対して非常に脆弱であることが示されている。
論文 参考訳(メタデータ) (2023-10-18T14:49:54Z) - A Comparative Study of Face Detection Algorithms for Masked Face
Detection [0.0]
最近注目を集めている顔検出問題のサブクラスは、顔検出を禁止している。
新型コロナウイルス(COVID-19)のパンデミックの出現から3年が経過した今、既存の顔検出アルゴリズムがマスクされた顔にどれだけ効果があるかという証拠は、まだ全くない。
この記事では、まず、マスクされた顔問題のために作られた最先端の顔検出器と検出器の簡単なレビューと、既存のマスクされた顔データセットのレビューを紹介する。
マスク付き顔検出における顔検出装置の性能評価と比較を行い,その要因について考察した。
論文 参考訳(メタデータ) (2023-05-18T16:03:37Z) - Robustness Disparities in Face Detection [64.71318433419636]
本稿では,その顔検出システムの詳細なベンチマークとして,商業モデルと学術モデルのノイズに対する頑健性について検討する。
すべてのデータセットやシステム全体で、$textitmasculineである個人の写真が$textitdarker skin type$$$、$textitdarker$、または$textitdim lighting$は、他のIDよりもエラーの影響を受けやすい。
論文 参考訳(メタデータ) (2022-11-29T05:22:47Z) - A Comparative Analysis of the Face Recognition Methods in Video
Surveillance Scenarios [0.0]
本研究では,最先端の顔認識手法に対する比較ベンチマーク表を提案する。
本研究では, 年齢差, クラス内差(顔のメイクアップ, ひげなど)のある顔IDの映像監視データセットを構築し, ネイティブな顔画像データを用いて評価を行った。
一方、この研究は、マスクのない顔、マスクされた顔、眼鏡をかけた顔など、さまざまな状況下で最高の認識方法を発見する。
論文 参考訳(メタデータ) (2022-11-05T17:59:18Z) - Detect Faces Efficiently: A Survey and Evaluations [13.105528567365281]
顔認識、表情認識、顔追跡、頭部推定を含む多くの応用は、画像中の顔の位置と大きさの両方が知られていると仮定する。
ディープラーニング技術は、かなりの計算量の増加と共に、対面検出に驚くべきブレークスルーをもたらした。
本稿では, 代表的な深層学習手法を紹介し, 精度と効率性の観点から, 深く, 徹底的な分析を行う。
論文 参考訳(メタデータ) (2021-12-03T08:39:40Z) - Evaluation of Human and Machine Face Detection using a Novel Distinctive
Human Appearance Dataset [0.76146285961466]
画像中の顔を検出する能力において,現在最先端の顔検出モデルを評価する。
評価結果から,顔検出アルゴリズムは多様な外観に適さないことが示された。
論文 参考訳(メタデータ) (2021-11-01T02:20:40Z) - SynFace: Face Recognition with Synthetic Data [83.15838126703719]
我々は、ID混在(IM)とドメイン混在(DM)を併用したSynFaceを考案し、パフォーマンスギャップを緩和する。
また、合成顔画像の系統的実験分析を行い、合成データを顔認識に効果的に活用する方法についての知見を提供する。
論文 参考訳(メタデータ) (2021-08-18T03:41:54Z) - I Only Have Eyes for You: The Impact of Masks On Convolutional-Based
Facial Expression Recognition [78.07239208222599]
今回提案したFaceChannelがマスクを持つ人からの表情認識にどのように適応するかを評価します。
また、制約された社会的相互作用シナリオにおける顔の特徴の変化を学習し、組み合わせるためのFaceChannelの本質的な能力を示すために、特定の機能レベルの可視化も行います。
論文 参考訳(メタデータ) (2021-04-16T20:03:30Z) - Impact of Facial Tattoos and Paintings on Face Recognition Systems [14.784088881975897]
顔の入れ墨や絵画が現在の顔認識システムに与える影響を調査します。
これらのモジュールに対する影響は、最先端のオープンソースおよび商用システムを用いて評価された。
私たちの研究は最初のケーススタディであり、顔のタトゥーや絵画によって引き起こされる視覚変化にロバストなアルゴリズムを設計する必要性を示しています。
論文 参考訳(メタデータ) (2021-03-17T22:38:13Z) - On the Robustness of Face Recognition Algorithms Against Attacks and
Bias [78.68458616687634]
顔認識アルゴリズムは非常に高い認識性能を示しており、現実のアプリケーションに適していることを示唆している。
精度が向上したにもかかわらず、これらのアルゴリズムの攻撃や偏見に対する堅牢性は問題視されている。
本稿では,顔認識アルゴリズムの頑健性に挑戦する様々な方法について要約する。
論文 参考訳(メタデータ) (2020-02-07T18:21:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。