論文の概要: ADCPNet: Adaptive Disparity Candidates Prediction Network for Efficient
Real-Time Stereo Matching
- arxiv url: http://arxiv.org/abs/2011.09023v1
- Date: Wed, 18 Nov 2020 01:18:52 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-24 04:12:37.857848
- Title: ADCPNet: Adaptive Disparity Candidates Prediction Network for Efficient
Real-Time Stereo Matching
- Title(参考訳): adcpnet:リアルタイムステレオマッチングのための適応的不一致候補予測ネットワーク
- Authors: He Dai, Xuchong Zhang, Yongli Zhao, Hongbin Sun
- Abstract要約: 粗粒度法は大規模ネットワークモデルのメモリ制約と速度制限を大幅に緩和した。
以前の粗大な設計では、粗大な格差マップを段階的に洗練するために、一定のオフセットと3つ以上のステージを使用する。
本稿では、より正確な不一致候補が提供される限り、より少ない段階で、粗い一致誤差を効率よく修正できると主張している。
- 参考スコア(独自算出の注目度): 8.046317778069325
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Efficient real-time disparity estimation is critical for the application of
stereo vision systems in various areas. Recently, stereo network based on
coarse-to-fine method has largely relieved the memory constraints and speed
limitations of large-scale network models. Nevertheless, all of the previous
coarse-to-fine designs employ constant offsets and three or more stages to
progressively refine the coarse disparity map, still resulting in
unsatisfactory computation accuracy and inference time when deployed on mobile
devices. This paper claims that the coarse matching errors can be corrected
efficiently with fewer stages as long as more accurate disparity candidates can
be provided. Therefore, we propose a dynamic offset prediction module to meet
different correction requirements of diverse objects and design an efficient
two-stage framework. Besides, we propose a disparity-independent convolution to
further improve the performance since it is more consistent with the local
statistical characteristics of the compact cost volume. The evaluation results
on multiple datasets and platforms clearly demonstrate that, the proposed
network outperforms the state-of-the-art lightweight models especially for
mobile devices in terms of accuracy and speed. Code will be made available.
- Abstract(参考訳): 様々な領域におけるステレオビジョンシステムの適用には,効率的な実時間不等式推定が不可欠である。
近年,大規模ネットワークモデルのメモリ制約や速度制限を大幅に緩和した。
それにもかかわらず、以前の粗大な設計は全て一定オフセットと3段階以上のステージを使用して、粗大な格差マップを徐々に洗練し、モバイル機器に展開する際の計算精度と推論時間が不満足な結果となった。
本稿では,より正確な不一致候補が得られさえすれば,粗一致誤差を少ない段数で効率的に補正できることを示す。
そこで,多様な対象の異なる補正要件を満たす動的オフセット予測モジュールを提案し,効率的な2段階フレームワークを設計する。
また, コンパクトコストボリュームの局所的な統計特性と整合性が高いため, 性能をさらに向上するための不一致非依存畳み込みを提案する。
複数のデータセットやプラットフォームに対する評価結果から,提案するネットワークは,特にモバイルデバイスにおいて,精度と速度の面で,最先端の軽量モデルよりも優れていることが示された。
コードは利用可能になる。
関連論文リスト
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
タスク指向エッジコンピューティングは、データ分析をエッジにシフトすることで、この問題に対処する。
既存の手法は、高いモデル性能と低いリソース消費のバランスをとるのに苦労している。
ニューラルネットワークアーキテクチャを最適化する新しい協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T19:02:54Z) - Multi-scale Iterative Residuals for Fast and Scalable Stereo Matching [13.76996108304056]
本稿では,このギャップを埋めるために,反復的マルチスケール粗粒微細化(iCFR)フレームワークを提案する。
マルチスケールのワープ機能を用いて,差分残差を推定し,コスト容積の差分探索範囲を最小限まで押し上げる。
最後に,マルチスケールアプローチに固有の精度の喪失を回復するために,改良ネットワークを適用した。
論文 参考訳(メタデータ) (2021-10-25T09:54:17Z) - FADNet++: Real-Time and Accurate Disparity Estimation with Configurable
Networks [19.29846600092521]
FADNet++は、分散度推定のための効率的なディープネットワークである。
リアルタイムアプリケーションのための高速なモデル推論速度で精度を高めることができる。
SceneFlowデータセットの新たな最先端結果を実現している。
論文 参考訳(メタデータ) (2021-10-06T08:50:33Z) - Multi-Exit Semantic Segmentation Networks [78.44441236864057]
本稿では,最先端セグメンテーションモデルをMESSネットワークに変換するフレームワークを提案する。
パラメトリド早期出口を用いた特別訓練されたCNNは、より簡単なサンプルの推測時に、その深さに沿って保存する。
接続されたセグメンテーションヘッドの数、配置、アーキテクチャとエグジットポリシーを併用して、デバイス機能とアプリケーション固有の要件に適応する。
論文 参考訳(メタデータ) (2021-06-07T11:37:03Z) - CFNet: Cascade and Fused Cost Volume for Robust Stereo Matching [27.313740022587442]
ステレオマッチングネットワークのロバスト性を改善するために,カスケードとフューズドのコストボリュームに基づくネットワークCFNetを提案する。
分散に基づく不確実性推定を用いて、次の段階の差分探索空間を適応的に調整する。
提案手法は、最先端の総合性能を達成し、Robust Vision Challenge 2020のステレオタスクで1位を獲得します。
論文 参考訳(メタデータ) (2021-04-09T11:38:59Z) - Continual Adaptation for Deep Stereo [52.181067640300014]
本稿では,難易度と変化の激しい環境に対処するために,深層ステレオネットワークの継続的適応パラダイムを提案する。
我々のパラダイムでは、オンラインモデルに継続的に適応するために必要な学習信号は、右から左への画像ワープや従来のステレオアルゴリズムによって自己監督から得られる。
我々のネットワークアーキテクチャと適応アルゴリズムは、初めてのリアルタイム自己適応型ディープステレオシステムを実現する。
論文 参考訳(メタデータ) (2020-07-10T08:15:58Z) - FADNet: A Fast and Accurate Network for Disparity Estimation [18.05392578461659]
本研究では,FADNetという分散度推定のための効率的かつ高精度なディープネットワークを提案する。
高速な計算を保存するために、2Dベースの効率的な相関層と積み重ねブロックを利用する。
精度を向上させるために、マルチスケールの重みスケジューリングトレーニング技術を活用するために、マルチスケールの予測を含んでいる。
論文 参考訳(メタデータ) (2020-03-24T10:27:11Z) - Resolution Adaptive Networks for Efficient Inference [53.04907454606711]
本稿では,低分解能表現が「容易」な入力を分類するのに十分である,という直感に触発された新しいレゾリューション適応ネットワーク(RANet)を提案する。
RANetでは、入力画像はまず、低解像度表現を効率的に抽出する軽量サブネットワークにルーティングされる。
ネットワーク内の高解像度パスは、"ハード"サンプルを認識する能力を維持している。
論文 参考訳(メタデータ) (2020-03-16T16:54:36Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
本稿では,予測の多様性を奨励することで,ニューラルネットワークの効果的なアンサンブルを生成する問題をターゲットにする。
そこで本研究では,潜伏変数の学習における逆損失の多様性を明示的に最適化し,マルチモーダルデータのモデリングに必要な出力予測の多様性を得る。
最も競争力のあるベースラインと比較して、データ分布の変化の下で、分類精度が大幅に向上した。
論文 参考訳(メタデータ) (2020-03-10T03:10:41Z) - Triple Wins: Boosting Accuracy, Robustness and Efficiency Together by
Enabling Input-Adaptive Inference [119.19779637025444]
深層ネットワークは、(クリーンな自然画像の場合)正確さと(敵対的な摂動画像の場合)頑健さの相違に直面することを最近提案された。
本稿では,入力適応推論に関連するマルチエグジットネットワークについて検討し,モデル精度,ロバスト性,効率の最適化において「スイートポイント」を達成する上での強い期待を示す。
論文 参考訳(メタデータ) (2020-02-24T00:40:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。