論文の概要: SoftSeg: Advantages of soft versus binary training for image
segmentation
- arxiv url: http://arxiv.org/abs/2011.09041v1
- Date: Wed, 18 Nov 2020 02:25:09 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-24 04:56:06.107069
- Title: SoftSeg: Advantages of soft versus binary training for image
segmentation
- Title(参考訳): softseg: 画像分割のためのソフト対バイナリトレーニングの利点
- Authors: Charley Gros, Andreanne Lemay, Julien Cohen-Adad
- Abstract要約: 我々は,ソフトグラウンドの真理ラベルを活用するディープラーニングトレーニングアプローチであるSoftSegを紹介する。
SoftSegは、分類問題ではなくレグレッションを解決することを目指している。
組織界面で一貫した柔らかい予測を発生させ、小さな物体に対する感度を増大させる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Most image segmentation algorithms are trained on binary masks formulated as
a classification task per pixel. However, in applications such as medical
imaging, this "black-and-white" approach is too constraining because the
contrast between two tissues is often ill-defined, i.e., the voxels located on
objects' edges contain a mixture of tissues. Consequently, assigning a single
"hard" label can result in a detrimental approximation. Instead, a soft
prediction containing non-binary values would overcome that limitation. We
introduce SoftSeg, a deep learning training approach that takes advantage of
soft ground truth labels, and is not bound to binary predictions. SoftSeg aims
at solving a regression instead of a classification problem. This is achieved
by using (i) no binarization after preprocessing and data augmentation, (ii) a
normalized ReLU final activation layer (instead of sigmoid), and (iii) a
regression loss function (instead of the traditional Dice loss). We assess the
impact of these three features on three open-source MRI segmentation datasets
from the spinal cord gray matter, the multiple sclerosis brain lesion, and the
multimodal brain tumor segmentation challenges. Across multiple
cross-validation iterations, SoftSeg outperformed the conventional approach,
leading to an increase in Dice score of 2.0% on the gray matter dataset
(p=0.001), 3.3% for the MS lesions, and 6.5% for the brain tumors. SoftSeg
produces consistent soft predictions at tissues' interfaces and shows an
increased sensitivity for small objects. The richness of soft labels could
represent the inter-expert variability, the partial volume effect, and
complement the model uncertainty estimation. The developed training pipeline
can easily be incorporated into most of the existing deep learning
architectures. It is already implemented in the freely-available deep learning
toolbox ivadomed (https://ivadomed.org).
- Abstract(参考訳): ほとんどの画像分割アルゴリズムは、ピクセルごとの分類タスクとして定式化されたバイナリマスクで訓練される。
しかし、医用イメージングのようなアプリケーションでは、この「黒と白」のアプローチは、2つの組織間のコントラストがしばしば不定義であり、つまり物体の端にあるボクセルには組織が混ざっているため、あまりにも制約が強い。
その結果、単一の「ハード」ラベルを割り当てると、有害な近似が得られる。
代わりに、非バイナリ値を含むソフトな予測は、その制限を克服する。
我々は、ソフトグラウンドの真理ラベルを活用するディープラーニングトレーニングアプローチであるSoftSegを紹介し、バイナリ予測に縛られない。
SoftSegは、分類問題ではなくレグレッションを解決することを目指している。
これは使用によって達成される
(i)前処理及びデータ拡張後のバイナリ化なし。
(二)正規化したReLU最終活性化層(シグモイドの代わりに)及び
(iii)回帰損失関数(従来のダイス損失の代わりに)。
この3つの特徴が脊髄灰白質からの3つのオープンソースのMRIセグメント化データセット,多発性硬化性脳病変,マルチモーダル脳腫瘍セグメント化課題に与える影響について検討した。
複数のクロスバリデーションを繰り返して、softsegは従来のアプローチを上回り、grey matterデータセット(p=0.001)ではdiceスコアが2.0%、ms病変では3.3%、脳腫瘍では6.5%増加した。
SoftSegは組織界面で一貫したソフト予測を生成し、小さな物体に対する感度を高める。
ソフトラベルの豊かさは, 実験間変動, 部分体積効果を示し, モデルの不確実性推定を補完する。
開発したトレーニングパイプラインは、既存のディープラーニングアーキテクチャの大部分に簡単に組み込める。
これは既に ivadomed (https://ivadomed.org) で実装されている。
関連論文リスト
- Multi-Scale Texture Loss for CT denoising with GANs [0.9349653765341301]
GAN(Generative Adversarial Networks)は、医療画像の応用を認知するための強力なフレームワークとして証明されている。
本研究は,Gray-Level-Co-occurrence Matrix (GLCM) の内在的マルチスケール特性を利用した損失関数を提案する。
また,画像から抽出したマルチスケールテクスチャ情報を動的に集約する自己認識層を導入する。
論文 参考訳(メタデータ) (2024-03-25T11:28:52Z) - WATUNet: A Deep Neural Network for Segmentation of Volumetric Sweep
Imaging Ultrasound [1.2903292694072621]
ボリューム・スイープ・イメージング(VSI)は、訓練を受けていないオペレーターが高品質な超音波画像をキャプチャできる革新的な手法である。
本稿ではWavelet_Attention_UNet(WATUNet)と呼ばれる新しいセグメンテーションモデルを提案する。
このモデルでは、簡単な接続ではなく、ウェーブレットゲート(WG)とアテンションゲート(AG)をエンコーダとデコーダの間に組み込んで、上記の制限を克服する。
論文 参考訳(メタデータ) (2023-11-17T20:32:37Z) - Disruptive Autoencoders: Leveraging Low-level features for 3D Medical
Image Pre-training [51.16994853817024]
本研究は、3Dラジオグラフィ画像のための効果的な事前学習フレームワークの設計に焦点をあてる。
ローカルマスキングと低レベルの摂動の組み合わせによって生成された破壊から、オリジナルのイメージを再構築しようとする事前トレーニングフレームワークであるDisruptive Autoencodersを紹介する。
提案する事前トレーニングフレームワークは、複数のダウンストリームタスクでテストされ、最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-07-31T17:59:42Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
半教師付きバイオメディカルイメージセグメンテーションのための自己教師付き補正学習パラダイムを提案する。
共有エンコーダと2つの独立デコーダを含むデュアルタスクネットワークを設計する。
異なるタスクのための3つの医用画像分割データセットの実験により,本手法の優れた性能が示された。
論文 参考訳(メタデータ) (2023-01-12T08:19:46Z) - Weakly Supervised Medical Image Segmentation With Soft Labels and Noise
Robust Loss [0.16490701092527607]
ディープラーニングモデルのトレーニングには、エキスパートラベル付きアノテーションを備えた大規模なデータセットが一般的に必要である。
不正確なセグメンテーションラベルで訓練されたディープラーニングモデルを用いた画像ベースの医療診断ツールは、誤診断や治療提案につながる可能性がある。
本研究の目的は, マルチラターアノテーションとMRIにおける病変の特徴の解剖学的知識に基づいて, 確率ラベルを生成する手法を開発し, 評価することである。
論文 参考訳(メタデータ) (2022-09-16T21:07:59Z) - GLEAM: Greedy Learning for Large-Scale Accelerated MRI Reconstruction [50.248694764703714]
アンロールされたニューラルネットワークは、最近最先端の加速MRI再構成を達成した。
これらのネットワークは、物理ベースの一貫性とニューラルネットワークベースの正規化を交互に組み合わせることで、反復最適化アルゴリズムをアンロールする。
我々は,高次元画像設定のための効率的なトレーニング戦略である加速度MRI再構成のためのグレディ・ラーニングを提案する。
論文 参考訳(メタデータ) (2022-07-18T06:01:29Z) - CORPS: Cost-free Rigorous Pseudo-labeling based on Similarity-ranking
for Brain MRI Segmentation [3.1657395760137406]
本稿では,新しいアトラスを用いた擬似ラベル法と3次元脳MRI分割のための3次元深部畳み込みニューラルネットワーク(DCNN)に基づく半教師付きセグメンテーションフレームワークを提案する。
実験により, 定性的, 定量的に比較して, 提案手法の優位性を示した。
論文 参考訳(メタデータ) (2022-05-19T14:42:49Z) - FedMed-ATL: Misaligned Unpaired Brain Image Synthesis via Affine
Transform Loss [58.58979566599889]
脳画像合成のための新しい自己教師型学習(FedMed)を提案する。
アフィン変換損失(ATL)は、プライバシー法に違反することなく、ひどく歪んだ画像を使用するように定式化された。
提案手法は, 極めて不整合かつ不整合なデータ設定下での合成結果の品質の両方において, 高度な性能を示す。
論文 参考訳(メタデータ) (2022-01-29T13:45:39Z) - MisMatch: Calibrated Segmentation via Consistency on Differential
Morphological Feature Perturbations with Limited Labels [5.500466607182699]
半教師付き学習は、医用画像におけるラベル不足の問題に対処する上で有望なパラダイムである。
MisMatchは、ペアの予測間の一貫性に基づいた半教師付きセグメンテーションフレームワークである。
論文 参考訳(メタデータ) (2021-10-23T09:22:41Z) - DONet: Dual Objective Networks for Skin Lesion Segmentation [77.9806410198298]
本稿では,皮膚病変のセグメンテーションを改善するために,Dual Objective Networks (DONet) という,シンプルで効果的なフレームワークを提案する。
我々のDONetは2つの対称デコーダを採用し、異なる目標に近づくための異なる予測を生成する。
皮膚内視鏡画像における多種多様な病変のスケールと形状の課題に対処するために,再帰的コンテキスト符号化モジュール(RCEM)を提案する。
論文 参考訳(メタデータ) (2020-08-19T06:02:46Z) - 3D medical image segmentation with labeled and unlabeled data using
autoencoders at the example of liver segmentation in CT images [58.720142291102135]
本研究では、畳み込みニューラルネットワークによるセグメンテーションを改善するために、オートエンコーダ抽出機能の可能性を検討する。
コンボリューション・オートエンコーダを用いてラベルのないデータから特徴を抽出し,CT画像における3次元肝セグメンテーションの目標タスクを実行するために,マルチスケールの完全畳み込みCNNを用いた。
論文 参考訳(メタデータ) (2020-03-17T20:20:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。