Devil's staircase of topological Peierls insulators and Peierls
supersolids
- URL: http://arxiv.org/abs/2011.09228v6
- Date: Thu, 30 Jun 2022 09:02:35 GMT
- Title: Devil's staircase of topological Peierls insulators and Peierls
supersolids
- Authors: Titas Chanda, Daniel Gonz\'alez-Cuadra, Maciej Lewenstein, Luca
Tagliacozzo, Jakub Zakrzewski
- Abstract summary: We consider a mixture of ultracold bosonic atoms on a one-dimensional lattice described by the XXZ-Bose-Hubbard model.
We show how the inclusion of antiferromagnetic interactions among the spin degrees of freedom generates a Devil's staircase of symmetry-protected topological phases.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider a mixture of ultracold bosonic atoms on a one-dimensional lattice
described by the XXZ-Bose-Hubbard model, where the tunneling of one species
depends on the spin state of a second deeply trapped species. We show how the
inclusion of antiferromagnetic interactions among the spin degrees of freedom
generates a Devil's staircase of symmetry-protected topological phases for a
wide parameter regime via a bosonic analog of the Peierls mechanism in
electron-phonon systems. These topological Peierls insulators are examples of
symmetry-breaking topological phases, where long-range order due to spontaneous
symmetry breaking coexists with topological properties such as fractionalized
edge states. Moreover, we identify a region of supersolid phases that do not
require long-range interactions. They appear instead due to a Peierls
incommensurability mechanism, where competing orders modify the underlying
crystalline structure of Peierls insulators, becoming superfluid. Our work show
the possibilities that ultracold atomic systems offer to investigate
strongly-correlated topological phenomena beyond those found in natural
materials.
Related papers
- Topological zero modes and edge symmetries of metastable Markovian
bosonic systems [0.0]
We study tight bosonic analogs of the Majorana and Dirac edge modes characteristic of topological superconductors and insulators.
We show the possibility of anomalous parity dynamics for a bosonic cat state prepared in a topologically metastable system.
Our results point to a new paradigm of genuine symmetry-protected topological physics in free bosons.
arXiv Detail & Related papers (2023-06-23T18:00:03Z) - Higher-order topological Peierls insulator in a two-dimensional
atom-cavity system [58.720142291102135]
We show how photon-mediated interactions give rise to a plaquette-ordered bond pattern in the atomic ground state.
The pattern opens a non-trivial topological gap in 2D, resulting in a higher-order topological phase hosting corner states.
Our work shows how atomic quantum simulators can be harnessed to investigate novel strongly-correlated topological phenomena.
arXiv Detail & Related papers (2023-05-05T10:25:14Z) - Subradiant edge states in an atom chain with waveguide-mediated hopping [0.0]
We analyze a system formed by two chains of identical emitters coupled to a waveguide, whose guided modes induce excitation hopping.
We find that, in the single excitation limit, the bulk topological properties of the Hamiltonian that describes the coherent dynamics of the system are identical to the ones of a one-dimensional Su-Schrieffer-Heeger model.
We analytically identify parameter regimes where edge states arise which are fully localized to the boundaries of the chain, independently of the system size.
arXiv Detail & Related papers (2022-05-27T09:35:49Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Phase diagram of Rydberg-dressed atoms on two-leg square ladders:
Coupling supersymmetric conformal field theories on the lattice [52.77024349608834]
We investigate the phase diagram of hard-core bosons in two-leg ladders in the presence of soft-shoulder potentials.
We show how the competition between local and non-local terms gives rise to a phase diagram with liquid phases with dominant cluster, spin, and density-wave quasi-long-range ordering.
arXiv Detail & Related papers (2021-12-20T09:46:08Z) - Topological transitions with continuously monitored free fermions [68.8204255655161]
We show the presence of a topological phase transition that is of a different universality class than that observed in stroboscopic projective circuits.
We find that this entanglement transition is well identified by a combination of the bipartite entanglement entropy and the topological entanglement entropy.
arXiv Detail & Related papers (2021-12-17T22:01:54Z) - Higher-order topological states mediated by long-range coupling in
$D_4$-symmetric lattices [0.0]
Topological physics opens a door towards flexible routing and resilient localization of waves of various nature.
Recently proposed higher-order topological insulators provide advanced control over wave localization in the structures of different dimensionality.
Here, we design and experimentally realize the resonant electric circuit with $D_4$ symmetry and additional next-nearest-neighbor couplings.
arXiv Detail & Related papers (2021-03-16T11:15:54Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z) - Probing chiral edge dynamics and bulk topology of a synthetic Hall
system [52.77024349608834]
Quantum Hall systems are characterized by the quantization of the Hall conductance -- a bulk property rooted in the topological structure of the underlying quantum states.
Here, we realize a quantum Hall system using ultracold dysprosium atoms, in a two-dimensional geometry formed by one spatial dimension.
We demonstrate that the large number of magnetic sublevels leads to distinct bulk and edge behaviors.
arXiv Detail & Related papers (2020-01-06T16:59:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.