論文の概要: Deep learning models for gastric signet ring cell carcinoma
classification in whole slide images
- arxiv url: http://arxiv.org/abs/2011.09247v1
- Date: Wed, 18 Nov 2020 12:39:51 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-24 05:06:37.878254
- Title: Deep learning models for gastric signet ring cell carcinoma
classification in whole slide images
- Title(参考訳): 全スライド画像における胃シグナレット環細胞癌分類の深層学習モデル
- Authors: Fahdi Kanavati, Shin Ichihara, Michael Rambeau, Osamu Iizuka, Koji
Arihiro, Masayuki Tsuneki
- Abstract要約: 胃のシグレットリング細胞癌(SRCC)は稀なタイプの癌であり、徐々に発生が増加する。
我々は、全スライド画像(WSI)のSRCCを予測するために、トランスファーラーニング、完全教師付き学習、弱教師付き学習を用いてディープラーニングモデルを訓練した。
最良のモデルは、4つのテストセットすべてにおいて少なくとも0.99の曲線(AUC)の下で受信者演算子曲線(ROC)領域を達成し、SRCC WSI分類のベースライン性能を最上位に設定した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Signet ring cell carcinoma (SRCC) of the stomach is a rare type of cancer
with a slowly rising incidence. It tends to be more difficult to detect by
pathologists mainly due to its cellular morphology and diffuse invasion manner,
and it has poor prognosis when detected at an advanced stage. Computational
pathology tools that can assist pathologists in detecting SRCC would be of a
massive benefit. In this paper, we trained deep learning models using transfer
learning, fully-supervised learning, and weakly-supervised learning to predict
SRCC in Whole Slide Images (WSIs) using a training set of 1,765 WSIs. We
evaluated the models on four different test sets of about 500 images each. The
best model achieved a Receiver Operator Curve (ROC) area under the curve (AUC)
of at least 0.99 on all four test sets, setting a top baseline performance for
SRCC WSI classification.
- Abstract(参考訳): 胃のシグレットリング細胞癌(SRCC)は稀なタイプの癌であり、徐々に発生が増加する。
病理学者は, 細胞形態学的, びまん性浸潤様式により検出が困難であり, 進行期において予後不良である。
SRCCの発見を病理学者が支援できる計算病理ツールは、大きな恩恵となるだろう。
本稿では,伝達学習,完全教師付き学習,弱教師付き学習を用いて深層学習モデルを訓練し,1,765個のWSIを用いて全スライド画像(WSI)のSRCCを予測する。
約500枚の画像の4つの異なるテストセットでモデルを評価した。
最良モデルは4つのテストセットすべてで少なくとも0.99の曲線(auc)下の受信者作用素曲線(roc)領域を達成し、srcc wsi分類の最高基準性能を設定した。
関連論文リスト
- Lung-CADex: Fully automatic Zero-Shot Detection and Classification of Lung Nodules in Thoracic CT Images [45.29301790646322]
コンピュータ支援診断は早期の肺結節の検出に役立ち、その後の結節の特徴づけを促進する。
MedSAMと呼ばれるSegment Anything Modelの変種を用いて肺結節をゼロショットでセグメント化するためのCADeを提案する。
また、放射能特徴のギャラリーを作成し、コントラスト学習を通じて画像と画像のペアを整列させることにより、良性/良性としての結節的特徴付けを行うCADxを提案する。
論文 参考訳(メタデータ) (2024-07-02T19:30:25Z) - Finding Regions of Interest in Whole Slide Images Using Multiple Instance Learning [0.23301643766310368]
病理ラベリングは通常、タイルレベルではなくスライドレベルで行われるため、WSI(Whole Slide Images)はAIベース/AI経由の分析に対する特別な課題である。
本稿では,がんの表現型を正確に予測するために,弱教師付き多重インスタンス学習(MIL)手法を提案する。
論文 参考訳(メタデータ) (2024-04-01T19:33:41Z) - Cell Maps Representation For Lung Adenocarcinoma Growth Patterns Classification In Whole Slide Images [0.5906576076342179]
肺腺癌は, 形態学的に異質な疾患であり, 5つの原発組織学的成長パターンを特徴とする。
組織タイルを5つのパターンの1つまたは非腫瘍の1つに分類できる新しい機械学習パイプラインを提案する。
論文 参考訳(メタデータ) (2023-11-27T14:12:51Z) - Active Learning Enhances Classification of Histopathology Whole Slide
Images with Attention-based Multiple Instance Learning [48.02011627390706]
我々は、注意に基づくMILをトレーニングし、データセット内の各画像に対する信頼度を算出し、専門家のアノテーションに対して最も不確実なWSIを選択する。
新たな注意誘導損失により、各クラスにアノテートされた領域がほとんどない、トレーニングされたモデルの精度が向上する。
将来的には、病理組織学における癌分類の臨床的に関連する文脈において、MILモデルのトレーニングに重要な貢献をする可能性がある。
論文 参考訳(メタデータ) (2023-03-02T15:18:58Z) - Significantly improving zero-shot X-ray pathology classification via fine-tuning pre-trained image-text encoders [50.689585476660554]
本稿では,正対損失緩和とランダムな文サンプリングを含む新たな微調整手法を提案する。
提案手法は,胸部X線データセットと3つの事前訓練モデル間のゼロショット病理分類を一貫して改善する。
論文 参考訳(メタデータ) (2022-12-14T06:04:18Z) - Histopathological Imaging Classification of Breast Tissue for Cancer
Diagnosis Support Using Deep Learning Models [0.0]
ヘマトキシリンとエオシンはがん診断における金の標準であると考えられている。
病理画像(WSI)を複数のパッチに分割するアイデアに基づいて,左から右へスライドし,上から下へスライドするウィンドウ[512,512]を,400イメージのデータセット上の拡張データに対して,各スライディングステップが50%重なり合うように使用した。
EffficientNetモデルは、高解像度の画像のトレーニングに適した、固定されたスケーリング要素のセットで、ネットワークの幅、深さ、解像度を均一にスケーリングする、最近開発されたモデルである。
論文 参考訳(メタデータ) (2022-07-03T13:56:44Z) - Multi-Scale Input Strategies for Medulloblastoma Tumor Classification
using Deep Transfer Learning [59.30734371401316]
乳腺芽腫は小児で最も多い悪性脳腫瘍である。
CNNはMBサブタイプ分類に有望な結果を示した。
タイルサイズと入力戦略の影響について検討した。
論文 参考訳(メタデータ) (2021-09-14T09:42:37Z) - A Deep Learning Study on Osteosarcoma Detection from Histological Images [6.341765152919201]
最も一般的な悪性骨腫瘍は骨肉腫である。
CNNは、外科医の作業量を著しく減らし、患者の状態の予後を良くする。
CNNは、より信頼できるパフォーマンスを達成するために、大量のデータをトレーニングする必要があります。
論文 参考訳(メタデータ) (2020-11-02T18:16:17Z) - Spectral-Spatial Recurrent-Convolutional Networks for In-Vivo
Hyperspectral Tumor Type Classification [49.32653090178743]
ハイパースペクトル画像とディープラーニングを用いたin-vivo腫瘍型分類の可能性を示した。
我々の最良のモデルは76.3%のAUCを達成し、従来の学習手法とディープラーニング手法を著しく上回っている。
論文 参考訳(メタデータ) (2020-07-02T12:00:53Z) - Co-Heterogeneous and Adaptive Segmentation from Multi-Source and
Multi-Phase CT Imaging Data: A Study on Pathological Liver and Lesion
Segmentation [48.504790189796836]
我々は,新しいセグメンテーション戦略,コヘテロジネティック・アダプティブセグメンテーション(CHASe)を提案する。
本稿では,外見に基づく半スーパービジョン,マスクに基づく対向ドメイン適応,擬似ラベルを融合した多目的フレームワークを提案する。
CHASeは4.2% sim 9.4%$の範囲で、病理的な肝臓マスクDice-Sorensen係数をさらに改善することができる。
論文 参考訳(メタデータ) (2020-05-27T06:58:39Z) - Representation Learning of Histopathology Images using Graph Neural
Networks [12.427740549056288]
本稿では,WSI表現学習のための2段階フレームワークを提案する。
色に基づく手法を用いて関連するパッチをサンプリングし、グラフニューラルネットワークを用いてサンプルパッチ間の関係を学習し、画像情報を単一のベクトル表現に集約する。
肺腺癌 (LUAD) と肺扁平上皮癌 (LUSC) の2つの亜型を鑑別するためのアプローチの有用性について検討した。
論文 参考訳(メタデータ) (2020-04-16T00:09:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。