Robustness to Missing Features using Hierarchical Clustering with Split
Neural Networks
- URL: http://arxiv.org/abs/2011.09596v1
- Date: Thu, 19 Nov 2020 00:35:08 GMT
- Title: Robustness to Missing Features using Hierarchical Clustering with Split
Neural Networks
- Authors: Rishab Khincha, Utkarsh Sarawgi, Wazeer Zulfikar, Pattie Maes
- Abstract summary: We propose a simple yet effective approach that clusters similar input features together using hierarchical clustering.
We evaluate this approach on a series of benchmark datasets and show promising improvements even with simple imputation techniques.
- Score: 39.29536042476913
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The problem of missing data has been persistent for a long time and poses a
major obstacle in machine learning and statistical data analysis. Past works in
this field have tried using various data imputation techniques to fill in the
missing data, or training neural networks (NNs) with the missing data. In this
work, we propose a simple yet effective approach that clusters similar input
features together using hierarchical clustering and then trains proportionately
split neural networks with a joint loss. We evaluate this approach on a series
of benchmark datasets and show promising improvements even with simple
imputation techniques. We attribute this to learning through clusters of
similar features in our model architecture. The source code is available at
https://github.com/usarawgi911/Robustness-to-Missing-Features
Related papers
- Novel Representation Learning Technique using Graphs for Performance
Analytics [0.0]
We propose a novel idea of transforming performance data into graphs to leverage the advancement of Graph Neural Network-based (GNN) techniques.
In contrast to other Machine Learning application domains, such as social networks, the graph is not given; instead, we need to build it.
We evaluate the effectiveness of the generated embeddings from GNNs based on how well they make even a simple feed-forward neural network perform for regression tasks.
arXiv Detail & Related papers (2024-01-19T16:34:37Z) - Data Augmentations in Deep Weight Spaces [89.45272760013928]
We introduce a novel augmentation scheme based on the Mixup method.
We evaluate the performance of these techniques on existing benchmarks as well as new benchmarks we generate.
arXiv Detail & Related papers (2023-11-15T10:43:13Z) - Few-shot Learning using Data Augmentation and Time-Frequency
Transformation for Time Series Classification [6.830148185797109]
We propose a novel few-shot learning framework through data augmentation.
We also develop a sequence-spectrogram neural network (SSNN)
Our methodology demonstrates its applicability of addressing the few-shot problems for time series classification.
arXiv Detail & Related papers (2023-11-06T15:32:50Z) - Hard Regularization to Prevent Deep Online Clustering Collapse without
Data Augmentation [65.268245109828]
Online deep clustering refers to the joint use of a feature extraction network and a clustering model to assign cluster labels to each new data point or batch as it is processed.
While faster and more versatile than offline methods, online clustering can easily reach the collapsed solution where the encoder maps all inputs to the same point and all are put into a single cluster.
We propose a method that does not require data augmentation, and that, differently from existing methods, regularizes the hard assignments.
arXiv Detail & Related papers (2023-03-29T08:23:26Z) - Learnable Graph Matching: A Practical Paradigm for Data Association [74.28753343714858]
We propose a general learnable graph matching method to address these issues.
Our method achieves state-of-the-art performance on several MOT datasets.
For image matching, our method outperforms state-of-the-art methods on a popular indoor dataset, ScanNet.
arXiv Detail & Related papers (2023-03-27T17:39:00Z) - Hybridization of Capsule and LSTM Networks for unsupervised anomaly
detection on multivariate data [0.0]
This paper introduces a novel NN architecture which hybridises the Long-Short-Term-Memory (LSTM) and Capsule Networks into a single network.
The proposed method uses an unsupervised learning technique to overcome the issues with finding large volumes of labelled training data.
arXiv Detail & Related papers (2022-02-11T10:33:53Z) - Task-Adaptive Neural Network Retrieval with Meta-Contrastive Learning [34.27089256930098]
We propose a novel neural network retrieval method, which retrieves the most optimal pre-trained network for a given task.
We train this framework by meta-learning a cross-modal latent space with contrastive loss, to maximize the similarity between a dataset and a network.
We validate the efficacy of our method on ten real-world datasets, against existing NAS baselines.
arXiv Detail & Related papers (2021-03-02T06:30:51Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - Multimodal Prototypical Networks for Few-shot Learning [20.100480009813953]
Cross-modal feature generation framework is used to enrich the low populated embedding space in few-shot scenarios.
We show that in such cases nearest neighbor classification is a viable approach and outperform state-of-the-art single-modal and multimodal few-shot learning methods.
arXiv Detail & Related papers (2020-11-17T19:32:59Z) - Fitting the Search Space of Weight-sharing NAS with Graph Convolutional
Networks [100.14670789581811]
We train a graph convolutional network to fit the performance of sampled sub-networks.
With this strategy, we achieve a higher rank correlation coefficient in the selected set of candidates.
arXiv Detail & Related papers (2020-04-17T19:12:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.