Reservoir Computing Approach to Quantum State Measurement
- URL: http://arxiv.org/abs/2011.09652v3
- Date: Mon, 3 May 2021 22:10:16 GMT
- Title: Reservoir Computing Approach to Quantum State Measurement
- Authors: Gerasimos Angelatos, Saeed Khan, Hakan E. T\"ureci
- Abstract summary: Reservoir computing is a resource-efficient solution to quantum measurement of superconducting multi-qubit systems.
We show how to operate this device to perform two-qubit state tomography and continuous parity monitoring.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Efficient quantum state measurement is important for maximizing the extracted
information from a quantum system. For multi-qubit quantum processors in
particular, the development of a scalable architecture for rapid and
high-fidelity readout remains a critical unresolved problem. Here we propose
reservoir computing as a resource-efficient solution to quantum measurement of
superconducting multi-qubit systems. We consider a small network of Josephson
parametric oscillators, which can be implemented with minimal device overhead
and in the same platform as the measured quantum system. We theoretically
analyze the operation of this Kerr network as a reservoir computer to classify
stochastic time-dependent signals subject to quantum statistical features. We
apply this reservoir computer to the task of multinomial classification of
measurement trajectories from joint multi-qubit readout. For a two-qubit
dispersive measurement under realistic conditions we demonstrate a
classification fidelity reliably exceeding that of an optimal linear filter
using only two to five reservoir nodes, while simultaneously requiring far less
calibration data \textendash{} as little as a single measurement per state. We
understand this remarkable performance through an analysis of the network
dynamics and develop an intuitive picture of reservoir processing generally.
Finally, we demonstrate how to operate this device to perform two-qubit state
tomography and continuous parity monitoring with equal effectiveness and ease
of calibration. This reservoir processor avoids computationally intensive
training common to other deep learning frameworks and can be implemented as an
integrated cryogenic superconducting device for low-latency processing of
quantum signals on the computational edge.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Practical and Scalable Quantum Reservoir Computing [0.0]
Quantum Reservoir Computing leverages quantum systems to solve complex computational tasks with unprecedented efficiency and reduced energy consumption.
This paper presents a novel QRC framework utilizing a quantum optical reservoir composed of two-level atoms within a single-mode optical cavity.
We evaluate the reservoir's performance through two primary tasks: the prediction of time-series data via the classification of sine-square waveforms.
arXiv Detail & Related papers (2024-05-08T04:14:31Z) - Multimodal deep representation learning for quantum cross-platform
verification [60.01590250213637]
Cross-platform verification, a critical undertaking in the realm of early-stage quantum computing, endeavors to characterize the similarity of two imperfect quantum devices executing identical algorithms.
We introduce an innovative multimodal learning approach, recognizing that the formalism of data in this task embodies two distinct modalities.
We devise a multimodal neural network to independently extract knowledge from these modalities, followed by a fusion operation to create a comprehensive data representation.
arXiv Detail & Related papers (2023-11-07T04:35:03Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - On-Chip Hardware-Aware Quantization for Mixed Precision Neural Networks [52.97107229149988]
We propose an On-Chip Hardware-Aware Quantization framework, performing hardware-aware mixed-precision quantization on deployed edge devices.
For efficiency metrics, we built an On-Chip Quantization Aware pipeline, which allows the quantization process to perceive the actual hardware efficiency of the quantization operator.
For accuracy metrics, we propose Mask-Guided Quantization Estimation technology to effectively estimate the accuracy impact of operators in the on-chip scenario.
arXiv Detail & Related papers (2023-09-05T04:39:34Z) - Potential and limitations of quantum extreme learning machines [55.41644538483948]
We present a framework to model QRCs and QELMs, showing that they can be concisely described via single effective measurements.
Our analysis paves the way to a more thorough understanding of the capabilities and limitations of both QELMs and QRCs.
arXiv Detail & Related papers (2022-10-03T09:32:28Z) - QSAN: A Near-term Achievable Quantum Self-Attention Network [73.15524926159702]
Self-Attention Mechanism (SAM) is good at capturing the internal connections of features.
A novel Quantum Self-Attention Network (QSAN) is proposed for image classification tasks on near-term quantum devices.
arXiv Detail & Related papers (2022-07-14T12:22:51Z) - Time Series Quantum Reservoir Computing with Weak and Projective
Measurements [0.0]
We show that it is possible to exploit the quantumness of the reservoir and to obtain ideal performance.
One consists in rewinding part of the dynamics determined by the fading memory of the reservoir and storing the corresponding data of the input sequence.
The other employs weak measurements operating online at the trade-off where information can be extracted accurately and without hindering the needed memory.
arXiv Detail & Related papers (2022-05-13T17:57:39Z) - Dispersive qubit readout with machine learning [0.08399688944263842]
Open quantum systems can undergo dissipative phase transitions, and their critical behavior can be exploited in sensing applications.
A recently introduced measurement protocol uses the parametric (two-photon driven) Kerr resonator's driven-dissipative phase transition to reach single-qubit detection fidelity of 99.9%.
We use machine learning-based classification algorithms to extract information from this critical dynamics.
arXiv Detail & Related papers (2021-12-10T04:25:43Z) - Physical reservoir computing using finitely-sampled quantum systems [0.0]
Reservoir computing exploits the nonlinear dynamics of a physical reservoir to perform complex time-series processing tasks.
Here we describe a framework for reservoir computing with nonlinear quantum reservoirs under continuous measurement.
arXiv Detail & Related papers (2021-10-26T16:46:14Z) - Quantum process tomography with unsupervised learning and tensor
networks [0.0]
We present a new technique for performing quantum process tomography.
We combine a tensor network representation of the channel with a data-driven optimization inspired by unsupervised machine learning.
Our results go far beyond state-of-the-art, providing a practical and timely tool for benchmarking quantum circuits in current and near-term quantum computers.
arXiv Detail & Related papers (2020-06-03T17:54:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.