Application of Deep Learning-based Interpolation Methods to Nearshore
Bathymetry
- URL: http://arxiv.org/abs/2011.09707v1
- Date: Thu, 19 Nov 2020 08:22:00 GMT
- Title: Application of Deep Learning-based Interpolation Methods to Nearshore
Bathymetry
- Authors: Yizhou Qian, Mojtaba Forghani, Jonghyun Harry Lee, Matthew Farthing,
Tyler Hesser, Peter Kitanidis, Eric Darve
- Abstract summary: We present several deep learning-based techniques to estimate nearshore bathymetry with sparse, multi-scale measurements.
We propose a Deep Neural Network (DNN) to compute posterior estimates of the nearshore bathymetry, as well as a conditional Generative Adversarial Network (cGAN) that samples from the posterior distribution.
- Score: 0.82354995224692
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Nearshore bathymetry, the topography of the ocean floor in coastal zones, is
vital for predicting the surf zone hydrodynamics and for route planning to
avoid subsurface features. Hence, it is increasingly important for a wide
variety of applications, including shipping operations, coastal management, and
risk assessment. However, direct high resolution surveys of nearshore
bathymetry are rarely performed due to budget constraints and logistical
restrictions. Another option when only sparse observations are available is to
use Gaussian Process regression (GPR), also called Kriging. But GPR has
difficulties recognizing patterns with sharp gradients, like those found around
sand bars and submerged objects, especially when observations are sparse. In
this work, we present several deep learning-based techniques to estimate
nearshore bathymetry with sparse, multi-scale measurements. We propose a Deep
Neural Network (DNN) to compute posterior estimates of the nearshore
bathymetry, as well as a conditional Generative Adversarial Network (cGAN) that
samples from the posterior distribution. We train our neural networks based on
synthetic data generated from nearshore surveys provided by the U.S.\ Army
Corps of Engineer Field Research Facility (FRF) in Duck, North Carolina. We
compare our methods with Kriging on real surveys as well as surveys with
artificially added sharp gradients. Results show that direct estimation by DNN
gives better predictions than Kriging in this application. We use bootstrapping
with DNN for uncertainty quantification. We also propose a method, named
DNN-Kriging, that combines deep learning with Kriging and shows further
improvement of the posterior estimates.
Related papers
- Continual Learning of Range-Dependent Transmission Loss for Underwater Acoustic using Conditional Convolutional Neural Net [0.0]
This research aims to improve the accuracy of deep-learning models for predicting underwater radiated noise in far-field scenarios.
We propose a novel range-conditional convolutional neural network that incorporates ocean bathymetry data into the input.
Our proposed architecture effectively captures transmission loss over a range-dependent, varying bathymetry profile.
arXiv Detail & Related papers (2024-04-11T19:13:38Z) - NeuralGF: Unsupervised Point Normal Estimation by Learning Neural
Gradient Function [55.86697795177619]
Normal estimation for 3D point clouds is a fundamental task in 3D geometry processing.
We introduce a new paradigm for learning neural gradient functions, which encourages the neural network to fit the input point clouds.
Our excellent results on widely used benchmarks demonstrate that our method can learn more accurate normals for both unoriented and oriented normal estimation tasks.
arXiv Detail & Related papers (2023-11-01T09:25:29Z) - Rapid Flood Inundation Forecast Using Fourier Neural Operator [77.30160833875513]
Flood inundation forecast provides critical information for emergency planning before and during flood events.
High-resolution hydrodynamic modeling has become more accessible in recent years, however, predicting flood extents at the street and building levels in real-time is still computationally demanding.
We present a hybrid process-based and data-driven machine learning (ML) approach for flood extent and inundation depth prediction.
arXiv Detail & Related papers (2023-07-29T22:49:50Z) - An evaluation of deep learning models for predicting water depth
evolution in urban floods [59.31940764426359]
We compare different deep learning models for prediction of water depth at high spatial resolution.
Deep learning models are trained to reproduce the data simulated by the CADDIES cellular-automata flood model.
Our results show that the deep learning models present in general lower errors compared to the other methods.
arXiv Detail & Related papers (2023-02-20T16:08:54Z) - Comparison of machine learning algorithms for merging gridded satellite
and earth-observed precipitation data [7.434517639563671]
We use monthly earth-observed precipitation data from the Global Historical Climatology Network monthly database, version 2.
Results suggest that extreme gradient boosting and random forests are the most accurate in terms of the squared error scoring function.
arXiv Detail & Related papers (2022-12-17T09:39:39Z) - Sample Complexity of Nonparametric Off-Policy Evaluation on
Low-Dimensional Manifolds using Deep Networks [71.95722100511627]
We consider the off-policy evaluation problem of reinforcement learning using deep neural networks.
We show that, by choosing network size appropriately, one can leverage the low-dimensional manifold structure in the Markov decision process.
arXiv Detail & Related papers (2022-06-06T20:25:20Z) - Wasserstein Iterative Networks for Barycenter Estimation [80.23810439485078]
We present an algorithm to approximate the Wasserstein-2 barycenters of continuous measures via a generative model.
Based on the celebrity faces dataset, we construct Ave, celeba! dataset which can be used for quantitative evaluation of barycenter algorithms.
arXiv Detail & Related papers (2022-01-28T16:59:47Z) - Variational encoder geostatistical analysis (VEGAS) with an application
to large scale riverine bathymetry [1.2093180801186911]
Estimation of riverbed profiles, also known as bathymetry, plays a vital role in many applications.
We propose a reduced-order model (ROM) based approach that utilizes a variational autoencoder (VAE), a type of deep neural network with a narrow layer in the middle.
We have tested our inversion approach on a one-mile reach of the Savannah River, GA, USA.
arXiv Detail & Related papers (2021-11-23T08:27:48Z) - Artificial Intelligence Hybrid Deep Learning Model for Groundwater Level
Prediction Using MLP-ADAM [0.0]
In this paper, a multi-layer perceptron is applied to simulate groundwater level.
The adaptive moment estimation algorithm is also used to this matter.
Results indicate that deep learning algorithms can demonstrate a high accuracy prediction.
arXiv Detail & Related papers (2021-07-29T10:11:45Z) - Augmented Sliced Wasserstein Distances [55.028065567756066]
We propose a new family of distance metrics, called augmented sliced Wasserstein distances (ASWDs)
ASWDs are constructed by first mapping samples to higher-dimensional hypersurfaces parameterized by neural networks.
Numerical results demonstrate that the ASWD significantly outperforms other Wasserstein variants for both synthetic and real-world problems.
arXiv Detail & Related papers (2020-06-15T23:00:08Z) - Filtering Internal Tides From Wide-Swath Altimeter Data Using
Convolutional Neural Networks [9.541153192112194]
We propose the use of convolutional neural networks (ConvNets) to estimate fields free of internal tide signals.
We also investigate the relevance of considering additional data from other sea surface variables such as sea surface temperature (SST)
arXiv Detail & Related papers (2020-05-03T14:02:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.