Attention-Based Transformers for Instance Segmentation of Cells in
Microstructures
- URL: http://arxiv.org/abs/2011.09763v2
- Date: Fri, 20 Nov 2020 08:04:27 GMT
- Title: Attention-Based Transformers for Instance Segmentation of Cells in
Microstructures
- Authors: Tim Prangemeier, Christoph Reich, Heinz Koeppl
- Abstract summary: We present a novel attention-based cell detection transformer (Cell-DETR) for direct end-to-end instance segmentation.
While the segmentation performance is on par with a state-of-the-art instance segmentation method, Cell-DETR is simpler and faster.
For the specific use case, the proposed method surpasses the state-of-the-art tools for semantic segmentation and additionally predicts the individual object instances.
- Score: 22.215852332444904
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Detecting and segmenting object instances is a common task in biomedical
applications. Examples range from detecting lesions on functional magnetic
resonance images, to the detection of tumours in histopathological images and
extracting quantitative single-cell information from microscopy imagery, where
cell segmentation is a major bottleneck. Attention-based transformers are
state-of-the-art in a range of deep learning fields. They have recently been
proposed for segmentation tasks where they are beginning to outperforming other
methods. We present a novel attention-based cell detection transformer
(Cell-DETR) for direct end-to-end instance segmentation. While the segmentation
performance is on par with a state-of-the-art instance segmentation method,
Cell-DETR is simpler and faster. We showcase the method's contribution in a the
typical use case of segmenting yeast in microstructured environments, commonly
employed in systems or synthetic biology. For the specific use case, the
proposed method surpasses the state-of-the-art tools for semantic segmentation
and additionally predicts the individual object instances. The fast and
accurate instance segmentation performance increases the experimental
information yield for a posteriori data processing and makes online monitoring
of experiments and closed-loop optimal experimental design feasible.
Related papers
- Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection [76.11864242047074]
We propose a novel Affine-Consistent Transformer (AC-Former), which directly yields a sequence of nucleus positions.
We introduce an Adaptive Affine Transformer (AAT) module, which can automatically learn the key spatial transformations to warp original images for local network training.
Experimental results demonstrate that the proposed method significantly outperforms existing state-of-the-art algorithms on various benchmarks.
arXiv Detail & Related papers (2023-10-22T02:27:02Z) - TraSeTR: Track-to-Segment Transformer with Contrastive Query for
Instance-level Instrument Segmentation in Robotic Surgery [60.439434751619736]
We propose TraSeTR, a Track-to-Segment Transformer that exploits tracking cues to assist surgical instrument segmentation.
TraSeTR jointly reasons about the instrument type, location, and identity with instance-level predictions.
The effectiveness of our method is demonstrated with state-of-the-art instrument type segmentation results on three public datasets.
arXiv Detail & Related papers (2022-02-17T05:52:18Z) - Search for temporal cell segmentation robustness in phase-contrast
microscopy videos [31.92922565397439]
In this work, we present a deep learning-based workflow to segment cancer cells embedded in 3D collagen matrices.
We also propose a geometrical-characterization approach to studying cancer cell morphology.
We introduce a new annotated dataset for 2D cell segmentation and tracking, and an open-source implementation to replicate the experiments or adapt them to new image processing problems.
arXiv Detail & Related papers (2021-12-16T12:03:28Z) - From augmented microscopy to the topological transformer: a new approach
in cell image analysis for Alzheimer's research [0.0]
Cell image analysis is crucial in Alzheimer's research to detect the presence of A$beta$ protein inhibiting cell function.
We first found Unet is most suitable in augmented microscopy by comparing performance in multi-class semantics segmentation.
We develop the augmented microscopy method to capture nuclei in a brightfield image and the transformer using Unet model to convert an input image into a sequence of topological information.
arXiv Detail & Related papers (2021-08-03T16:59:33Z) - Object-Guided Instance Segmentation With Auxiliary Feature Refinement
for Biological Images [58.914034295184685]
Instance segmentation is of great importance for many biological applications, such as study of neural cell interactions, plant phenotyping, and quantitatively measuring how cells react to drug treatment.
Box-based instance segmentation methods capture objects via bounding boxes and then perform individual segmentation within each bounding box region.
Our method first detects the center points of the objects, from which the bounding box parameters are then predicted.
The segmentation branch reuses the object features as guidance to separate target object from the neighboring ones within the same bounding box region.
arXiv Detail & Related papers (2021-06-14T04:35:36Z) - Embedding-based Instance Segmentation of Microscopy Images [8.516639438995785]
We introduce EmbedSeg, an end-to-end trainable deep learning method based on the work by Neven et al.
While their approach embeds each pixel to the centroid of any given instance, in EmbedSeg, motivated by the complex shapes of biological objects, we propose to use the medoid instead.
We demonstrate that embedding-based instance segmentation achieves competitive results in comparison to state-of-the-art methods on diverse microscopy datasets.
arXiv Detail & Related papers (2021-01-25T12:06:44Z) - Multiclass Yeast Segmentation in Microstructured Environments with Deep
Learning [20.456742449675904]
We present convolutional neural networks trained for multiclass segmenting of individual yeast cells.
We showcase the method's contribution to segmenting yeast in microstructured environments with a typical synthetic biology application.
arXiv Detail & Related papers (2020-11-16T16:16:13Z) - Split and Expand: An inference-time improvement for Weakly Supervised
Cell Instance Segmentation [71.50526869670716]
We propose a two-step post-processing procedure, Split and Expand, to improve the conversion of segmentation maps to instances.
In the Split step, we split clumps of cells from the segmentation map into individual cell instances with the guidance of cell-center predictions.
In the Expand step, we find missing small cells using the cell-center predictions.
arXiv Detail & Related papers (2020-07-21T14:05:09Z) - Learning to segment clustered amoeboid cells from brightfield microscopy
via multi-task learning with adaptive weight selection [6.836162272841265]
We introduce a novel supervised technique for cell segmentation in a multi-task learning paradigm.
A combination of a multi-task loss, based on the region and cell boundary detection, is employed for an improved prediction efficiency of the network.
We observe an overall Dice score of 0.93 on the validation set, which is an improvement of over 15.9% on a recent unsupervised method, and outperforms the popular supervised U-net algorithm by at least $5.8%$ on average.
arXiv Detail & Related papers (2020-05-19T11:31:53Z) - Unsupervised Instance Segmentation in Microscopy Images via Panoptic
Domain Adaptation and Task Re-weighting [86.33696045574692]
We propose a Cycle Consistency Panoptic Domain Adaptive Mask R-CNN (CyC-PDAM) architecture for unsupervised nuclei segmentation in histopathology images.
We first propose a nuclei inpainting mechanism to remove the auxiliary generated objects in the synthesized images.
Secondly, a semantic branch with a domain discriminator is designed to achieve panoptic-level domain adaptation.
arXiv Detail & Related papers (2020-05-05T11:08:26Z) - Robust Medical Instrument Segmentation Challenge 2019 [56.148440125599905]
Intraoperative tracking of laparoscopic instruments is often a prerequisite for computer and robotic-assisted interventions.
Our challenge was based on a surgical data set comprising 10,040 annotated images acquired from a total of 30 surgical procedures.
The results confirm the initial hypothesis, namely that algorithm performance degrades with an increasing domain gap.
arXiv Detail & Related papers (2020-03-23T14:35:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.