Search for temporal cell segmentation robustness in phase-contrast
microscopy videos
- URL: http://arxiv.org/abs/2112.08817v1
- Date: Thu, 16 Dec 2021 12:03:28 GMT
- Title: Search for temporal cell segmentation robustness in phase-contrast
microscopy videos
- Authors: Estibaliz G\'omez-de-Mariscal, Hasini Jayatilaka, \"Ozg\"un
\c{C}i\c{c}ek, Thomas Brox, Denis Wirtz, Arrate Mu\~noz-Barrutia
- Abstract summary: In this work, we present a deep learning-based workflow to segment cancer cells embedded in 3D collagen matrices.
We also propose a geometrical-characterization approach to studying cancer cell morphology.
We introduce a new annotated dataset for 2D cell segmentation and tracking, and an open-source implementation to replicate the experiments or adapt them to new image processing problems.
- Score: 31.92922565397439
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Studying cell morphology changes in time is critical to understanding cell
migration mechanisms. In this work, we present a deep learning-based workflow
to segment cancer cells embedded in 3D collagen matrices and imaged with
phase-contrast microscopy. Our approach uses transfer learning and recurrent
convolutional long-short term memory units to exploit the temporal information
from the past and provide a consistent segmentation result. Lastly, we propose
a geometrical-characterization approach to studying cancer cell morphology. Our
approach provides stable results in time, and it is robust to the different
weight initialization or training data sampling. We introduce a new annotated
dataset for 2D cell segmentation and tracking, and an open-source
implementation to replicate the experiments or adapt them to new image
processing problems.
Related papers
- Deep Temporal Sequence Classification and Mathematical Modeling for Cell Tracking in Dense 3D Microscopy Videos of Bacterial Biofilms [18.563062576080704]
We introduce a novel cell tracking algorithm named DenseTrack.
DenseTrack integrates deep learning with mathematical model-based strategies to establish correspondences between consecutive frames.
We present an eigendecomposition-based cell division detection strategy.
arXiv Detail & Related papers (2024-06-27T23:26:57Z) - Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection [76.11864242047074]
We propose a novel Affine-Consistent Transformer (AC-Former), which directly yields a sequence of nucleus positions.
We introduce an Adaptive Affine Transformer (AAT) module, which can automatically learn the key spatial transformations to warp original images for local network training.
Experimental results demonstrate that the proposed method significantly outperforms existing state-of-the-art algorithms on various benchmarks.
arXiv Detail & Related papers (2023-10-22T02:27:02Z) - Learning Deformable 3D Graph Similarity to Track Plant Cells in
Unregistered Time Lapse Images [17.017730437647977]
We propose a novel learning-based method that exploits the tightly packed three-dimensional cell structure of plant cells to create a three-dimensional graph in order to perform accurate cell tracking.
We demonstrate the efficacy of our algorithm in terms of tracking accuracy and inference-time on a benchmark dataset.
arXiv Detail & Related papers (2023-09-20T09:04:01Z) - 3D Mitochondria Instance Segmentation with Spatio-Temporal Transformers [101.44668514239959]
We propose a hybrid encoder-decoder framework that efficiently computes spatial and temporal attentions in parallel.
We also introduce a semantic clutter-background adversarial loss during training that aids in the region of mitochondria instances from the background.
arXiv Detail & Related papers (2023-03-21T17:58:49Z) - Multi-Modality Microscopy Image Style Transfer for Nuclei Segmentation [3.535158633337794]
We propose a microscopy-style augmentation technique based on a generative adversarial network (GAN)
Unlike other style transfer methods, it can not only deal with different cell assay types and lighting conditions, but also with different imaging modalities.
We evaluate our data augmentation on the 2018 Data Science Bowl dataset consisting of various cell assays, lighting conditions, and imaging modalities.
arXiv Detail & Related papers (2021-11-23T20:19:20Z) - From augmented microscopy to the topological transformer: a new approach
in cell image analysis for Alzheimer's research [0.0]
Cell image analysis is crucial in Alzheimer's research to detect the presence of A$beta$ protein inhibiting cell function.
We first found Unet is most suitable in augmented microscopy by comparing performance in multi-class semantics segmentation.
We develop the augmented microscopy method to capture nuclei in a brightfield image and the transformer using Unet model to convert an input image into a sequence of topological information.
arXiv Detail & Related papers (2021-08-03T16:59:33Z) - Automatic size and pose homogenization with spatial transformer network
to improve and accelerate pediatric segmentation [51.916106055115755]
We propose a new CNN architecture that is pose and scale invariant thanks to the use of Spatial Transformer Network (STN)
Our architecture is composed of three sequential modules that are estimated together during training.
We test the proposed method in kidney and renal tumor segmentation on abdominal pediatric CT scanners.
arXiv Detail & Related papers (2021-07-06T14:50:03Z) - Enforcing Morphological Information in Fully Convolutional Networks to
Improve Cell Instance Segmentation in Fluorescence Microscopy Images [1.408123603417833]
We propose a novel cell instance segmentation approach based on the well-known U-Net architecture.
To enforce the learning of morphological information per pixel, a deep distance transformer (DDT) acts as a back-bone model.
The obtained results suggest a performance boost over traditional U-Net architectures.
arXiv Detail & Related papers (2021-06-10T15:54:38Z) - A parameter refinement method for Ptychography based on Deep Learning
concepts [55.41644538483948]
coarse parametrisation in propagation distance, position errors and partial coherence frequently menaces the experiment viability.
A modern Deep Learning framework is used to correct autonomously the setup incoherences, thus improving the quality of a ptychography reconstruction.
We tested our system on both synthetic datasets and also on real data acquired at the TwinMic beamline of the Elettra synchrotron facility.
arXiv Detail & Related papers (2021-05-18T10:15:17Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
We propose a novel Machine Learning architecture, which allows us to infuse a neural deep network with human-powered abstraction on the level of data.
Specifically, we train a generative model simultaneously on natural and synthetic data, so that it learns a shared representation, from which a target variable, such as the cell count, can be reliably estimated.
arXiv Detail & Related papers (2020-10-20T08:36:51Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.