Learning to segment clustered amoeboid cells from brightfield microscopy
via multi-task learning with adaptive weight selection
- URL: http://arxiv.org/abs/2005.09372v1
- Date: Tue, 19 May 2020 11:31:53 GMT
- Title: Learning to segment clustered amoeboid cells from brightfield microscopy
via multi-task learning with adaptive weight selection
- Authors: Rituparna Sarkar, Suvadip Mukherjee, Elisabeth Labruy\`ere and
Jean-Christophe Olivo-Marin
- Abstract summary: We introduce a novel supervised technique for cell segmentation in a multi-task learning paradigm.
A combination of a multi-task loss, based on the region and cell boundary detection, is employed for an improved prediction efficiency of the network.
We observe an overall Dice score of 0.93 on the validation set, which is an improvement of over 15.9% on a recent unsupervised method, and outperforms the popular supervised U-net algorithm by at least $5.8%$ on average.
- Score: 6.836162272841265
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Detecting and segmenting individual cells from microscopy images is critical
to various life science applications. Traditional cell segmentation tools are
often ill-suited for applications in brightfield microscopy due to poor
contrast and intensity heterogeneity, and only a small subset are applicable to
segment cells in a cluster. In this regard, we introduce a novel supervised
technique for cell segmentation in a multi-task learning paradigm. A
combination of a multi-task loss, based on the region and cell boundary
detection, is employed for an improved prediction efficiency of the network.
The learning problem is posed in a novel min-max framework which enables
adaptive estimation of the hyper-parameters in an automatic fashion. The region
and cell boundary predictions are combined via morphological operations and
active contour model to segment individual cells.
The proposed methodology is particularly suited to segment touching cells
from brightfield microscopy images without manual interventions.
Quantitatively, we observe an overall Dice score of 0.93 on the validation set,
which is an improvement of over 15.9% on a recent unsupervised method, and
outperforms the popular supervised U-net algorithm by at least $5.8\%$ on
average.
Related papers
- Practical Guidelines for Cell Segmentation Models Under Optical Aberrations in Microscopy [14.042884268397058]
This study evaluates cell image segmentation models under optical aberrations from fluorescence and bright field microscopy.
We train and test several segmentation models, including the Otsu threshold method and Mask R-CNN with different network heads.
In contrast, Cellpose 2.0 proves effective for complex cell images under similar conditions.
arXiv Detail & Related papers (2024-04-12T15:45:26Z) - Single-Cell Deep Clustering Method Assisted by Exogenous Gene
Information: A Novel Approach to Identifying Cell Types [50.55583697209676]
We develop an attention-enhanced graph autoencoder, which is designed to efficiently capture the topological features between cells.
During the clustering process, we integrated both sets of information and reconstructed the features of both cells and genes to generate a discriminative representation.
This research offers enhanced insights into the characteristics and distribution of cells, thereby laying the groundwork for early diagnosis and treatment of diseases.
arXiv Detail & Related papers (2023-11-28T09:14:55Z) - Single-cell Multi-view Clustering via Community Detection with Unknown
Number of Clusters [64.31109141089598]
We introduce scUNC, an innovative multi-view clustering approach tailored for single-cell data.
scUNC seamlessly integrates information from different views without the need for a predefined number of clusters.
We conducted a comprehensive evaluation of scUNC using three distinct single-cell datasets.
arXiv Detail & Related papers (2023-11-28T08:34:58Z) - Multi-stream Cell Segmentation with Low-level Cues for Multi-modality
Images [66.79688768141814]
We develop an automatic cell classification pipeline to label microscopy images.
We then train a classification model based on the category labels.
We deploy two types of segmentation models to segment cells with roundish and irregular shapes.
arXiv Detail & Related papers (2023-10-22T08:11:08Z) - Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection [76.11864242047074]
We propose a novel Affine-Consistent Transformer (AC-Former), which directly yields a sequence of nucleus positions.
We introduce an Adaptive Affine Transformer (AAT) module, which can automatically learn the key spatial transformations to warp original images for local network training.
Experimental results demonstrate that the proposed method significantly outperforms existing state-of-the-art algorithms on various benchmarks.
arXiv Detail & Related papers (2023-10-22T02:27:02Z) - CLANet: A Comprehensive Framework for Cross-Batch Cell Line
Identification Using Brightfield Images [21.660573230005173]
We introduce CLANet, a pioneering framework for cross-batch cell line identification using brightfield images.
We propose a cell cluster-level selection method to efficiently capture cell density variations, and a self-supervised learning strategy to manage image quality variations.
We validate CLANet using data from 32 cell lines across 93 experimental batches from the AstraZeneca Global Cell Bank.
arXiv Detail & Related papers (2023-06-28T20:24:53Z) - Advanced Multi-Microscopic Views Cell Semi-supervised Segmentation [0.0]
Deep learning (DL) shows powerful potential in cell segmentation tasks, but suffers from poor generalization.
In this paper, we introduce a novel semi-supervised cell segmentation method called Multi-Microscopic-view Cell semi-supervised (MMCS)
MMCS can train cell segmentation models utilizing less labeled multi-posture cell images with different microscopy well.
It achieves an F1-score of 0.8239 and the running time for all cases is within the time tolerance.
arXiv Detail & Related papers (2023-03-21T08:08:13Z) - MEDIAR: Harmony of Data-Centric and Model-Centric for Multi-Modality
Microscopy [9.405458160620533]
We propose MEDIAR, a holistic pipeline for cell instance segmentation under multi-modality.
We achieve a 0.9067 F1-score at the validation phase while satisfying the time budget.
To facilitate subsequent research, we provide the source code and trained model as open-source.
arXiv Detail & Related papers (2022-12-07T05:09:24Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
We propose a novel Machine Learning architecture, which allows us to infuse a neural deep network with human-powered abstraction on the level of data.
Specifically, we train a generative model simultaneously on natural and synthetic data, so that it learns a shared representation, from which a target variable, such as the cell count, can be reliably estimated.
arXiv Detail & Related papers (2020-10-20T08:36:51Z) - Split and Expand: An inference-time improvement for Weakly Supervised
Cell Instance Segmentation [71.50526869670716]
We propose a two-step post-processing procedure, Split and Expand, to improve the conversion of segmentation maps to instances.
In the Split step, we split clumps of cells from the segmentation map into individual cell instances with the guidance of cell-center predictions.
In the Expand step, we find missing small cells using the cell-center predictions.
arXiv Detail & Related papers (2020-07-21T14:05:09Z) - Cell Segmentation and Tracking using CNN-Based Distance Predictions and
a Graph-Based Matching Strategy [0.20999222360659608]
We present a method for the segmentation of touching cells in microscopy images.
By using a novel representation of cell borders, inspired by distance maps, our method is capable to utilize not only touching cells but also close cells in the training process.
This representation is notably robust to annotation errors and shows promising results for the segmentation of microscopy images containing in the training data underrepresented or not included cell types.
arXiv Detail & Related papers (2020-04-03T11:55:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.