Impact of Accuracy on Model Interpretations
- URL: http://arxiv.org/abs/2011.09903v1
- Date: Tue, 17 Nov 2020 19:02:59 GMT
- Title: Impact of Accuracy on Model Interpretations
- Authors: Brian Liu and Madeleine Udell
- Abstract summary: It is vital for a data scientist to choose trustworthy interpretations to drive real world impact.
We propose two metrics to quantify the quality of an interpretation and design an experiment to test how these metrics vary with model accuracy.
We find that for datasets that can be modeled accurately by a variety of methods, simpler methods yield higher quality interpretations.
- Score: 24.975981795360845
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Model interpretations are often used in practice to extract real world
insights from machine learning models. These interpretations have a wide range
of applications; they can be presented as business recommendations or used to
evaluate model bias. It is vital for a data scientist to choose trustworthy
interpretations to drive real world impact. Doing so requires an understanding
of how the accuracy of a model impacts the quality of standard interpretation
tools. In this paper, we will explore how a model's predictive accuracy affects
interpretation quality. We propose two metrics to quantify the quality of an
interpretation and design an experiment to test how these metrics vary with
model accuracy. We find that for datasets that can be modeled accurately by a
variety of methods, simpler methods yield higher quality interpretations. We
also identify which interpretation method works the best for lower levels of
model accuracy.
Related papers
- On the Calibration of Large Language Models and Alignment [63.605099174744865]
Confidence calibration serves as a crucial tool for gauging the reliability of deep models.
We conduct a systematic examination of the calibration of aligned language models throughout the entire construction process.
Our work sheds light on whether popular LLMs are well-calibrated and how the training process influences model calibration.
arXiv Detail & Related papers (2023-11-22T08:57:55Z) - Influence Tuning: Demoting Spurious Correlations via Instance
Attribution and Instance-Driven Updates [26.527311287924995]
influence tuning can help deconfounding the model from spurious patterns in data.
We show that in a controlled setup, influence tuning can help deconfounding the model from spurious patterns in data.
arXiv Detail & Related papers (2021-10-07T06:59:46Z) - Exploring Strategies for Generalizable Commonsense Reasoning with
Pre-trained Models [62.28551903638434]
We measure the impact of three different adaptation methods on the generalization and accuracy of models.
Experiments with two models show that fine-tuning performs best, by learning both the content and the structure of the task, but suffers from overfitting and limited generalization to novel answers.
We observe that alternative adaptation methods like prefix-tuning have comparable accuracy, but generalize better to unseen answers and are more robust to adversarial splits.
arXiv Detail & Related papers (2021-09-07T03:13:06Z) - On the Lack of Robust Interpretability of Neural Text Classifiers [14.685352584216757]
We assess the robustness of interpretations of neural text classifiers based on pretrained Transformer encoders.
Both tests show surprising deviations from expected behavior, raising questions about the extent of insights that practitioners may draw from interpretations.
arXiv Detail & Related papers (2021-06-08T18:31:02Z) - Beyond Trivial Counterfactual Explanations with Diverse Valuable
Explanations [64.85696493596821]
In computer vision applications, generative counterfactual methods indicate how to perturb a model's input to change its prediction.
We propose a counterfactual method that learns a perturbation in a disentangled latent space that is constrained using a diversity-enforcing loss.
Our model improves the success rate of producing high-quality valuable explanations when compared to previous state-of-the-art methods.
arXiv Detail & Related papers (2021-03-18T12:57:34Z) - Distilling Interpretable Models into Human-Readable Code [71.11328360614479]
Human-readability is an important and desirable standard for machine-learned model interpretability.
We propose to train interpretable models using conventional methods, and then distill them into concise, human-readable code.
We describe a piecewise-linear curve-fitting algorithm that produces high-quality results efficiently and reliably across a broad range of use cases.
arXiv Detail & Related papers (2021-01-21T01:46:36Z) - Interpretable Multi-dataset Evaluation for Named Entity Recognition [110.64368106131062]
We present a general methodology for interpretable evaluation for the named entity recognition (NER) task.
The proposed evaluation method enables us to interpret the differences in models and datasets, as well as the interplay between them.
By making our analysis tool available, we make it easy for future researchers to run similar analyses and drive progress in this area.
arXiv Detail & Related papers (2020-11-13T10:53:27Z) - Are Visual Explanations Useful? A Case Study in Model-in-the-Loop
Prediction [49.254162397086006]
We study explanations based on visual saliency in an image-based age prediction task.
We find that presenting model predictions improves human accuracy.
However, explanations of various kinds fail to significantly alter human accuracy or trust in the model.
arXiv Detail & Related papers (2020-07-23T20:39:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.