Challenges in Deploying Machine Learning: a Survey of Case Studies
- URL: http://arxiv.org/abs/2011.09926v3
- Date: Thu, 19 May 2022 09:51:14 GMT
- Title: Challenges in Deploying Machine Learning: a Survey of Case Studies
- Authors: Andrei Paleyes, Raoul-Gabriel Urma, Neil D. Lawrence
- Abstract summary: This survey reviews published reports of deploying machine learning solutions in a variety of use cases, industries and applications.
By mapping found challenges to the steps of the machine learning deployment workflow we show that practitioners face issues at each stage of the deployment process.
- Score: 11.028123436097616
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, machine learning has transitioned from a field of academic
research interest to a field capable of solving real-world business problems.
However, the deployment of machine learning models in production systems can
present a number of issues and concerns. This survey reviews published reports
of deploying machine learning solutions in a variety of use cases, industries
and applications and extracts practical considerations corresponding to stages
of the machine learning deployment workflow. By mapping found challenges to the
steps of the machine learning deployment workflow we show that practitioners
face issues at each stage of the deployment process. The goal of this paper is
to lay out a research agenda to explore approaches addressing these challenges.
Related papers
- Machine Learning Operations: A Mapping Study [0.0]
This article discusses the issues that exist in several components of the MLOps pipeline.
A systematic mapping study is performed to identify the challenges that arise in the MLOps system categorized by different focus areas.
The main value of this work is it maps distinctive challenges in MLOps along with the recommended solutions outlined in our study.
arXiv Detail & Related papers (2024-09-28T17:17:40Z) - "Forgetting" in Machine Learning and Beyond: A Survey [0.0]
This survey focuses on the benefits of forgetting and its applications across various machine learning sub-fields.
The paper discusses current challenges, future directions, and ethical considerations regarding the integration of forgetting mechanisms into machine learning models.
arXiv Detail & Related papers (2024-05-31T05:10:30Z) - Application-Driven Innovation in Machine Learning [56.85396167616353]
We describe the paradigm of application-driven research in machine learning.
We show how this approach can productively synergize with methods-driven work.
Despite these benefits, we find that reviewing, hiring, and teaching practices in machine learning often hold back application-driven innovation.
arXiv Detail & Related papers (2024-03-26T04:59:27Z) - Machine Unlearning: A Survey [56.79152190680552]
A special need has arisen where, due to privacy, usability, and/or the right to be forgotten, information about some specific samples needs to be removed from a model, called machine unlearning.
This emerging technology has drawn significant interest from both academics and industry due to its innovation and practicality.
No study has analyzed this complex topic or compared the feasibility of existing unlearning solutions in different kinds of scenarios.
The survey concludes by highlighting some of the outstanding issues with unlearning techniques, along with some feasible directions for new research opportunities.
arXiv Detail & Related papers (2023-06-06T10:18:36Z) - Towards Automated Process Planning and Mining [77.34726150561087]
We present a research project in which researchers from the AI and BPM field work jointly together.
We discuss the overall research problem, the relevant fields of research and our overall research framework to automatically derive process models.
arXiv Detail & Related papers (2022-08-18T16:41:22Z) - Software Testing for Machine Learning [13.021014899410684]
Machine learning has shown to be susceptible to deception, leading to errors and even fatal failures.
This circumstance calls into question the widespread use of machine learning, especially in safety-critical applications.
This summary talk discusses the current state-of-the-art of software testing for machine learning.
arXiv Detail & Related papers (2022-04-30T08:47:10Z) - A Survey on Machine Learning Techniques for Source Code Analysis [14.129976741300029]
We aim to summarize the current knowledge in the area of applied machine learning for source code analysis.
To do so, we carried out an extensive literature search and identified 364 primary studies published between 2002 and 2021.
arXiv Detail & Related papers (2021-10-18T20:13:38Z) - Knowledge as Invariance -- History and Perspectives of
Knowledge-augmented Machine Learning [69.99522650448213]
Research in machine learning is at a turning point.
Research interests are shifting away from increasing the performance of highly parameterized models to exceedingly specific tasks.
This white paper provides an introduction and discussion of this emerging field in machine learning research.
arXiv Detail & Related papers (2020-12-21T15:07:19Z) - A Survey of Machine Learning Methods and Challenges for Windows Malware
Classification [43.4550536920809]
Survey aims to be useful both to cybersecurity practitioners who wish to learn more about how machine learning can be applied to the malware problem, and to give data scientists the necessary background into the challenges in this uniquely complicated space.
arXiv Detail & Related papers (2020-06-15T17:46:12Z) - Machine Learning for Software Engineering: A Systematic Mapping [73.30245214374027]
The software development industry is rapidly adopting machine learning for transitioning modern day software systems towards highly intelligent and self-learning systems.
No comprehensive study exists that explores the current state-of-the-art on the adoption of machine learning across software engineering life cycle stages.
This study introduces a machine learning for software engineering (MLSE) taxonomy classifying the state-of-the-art machine learning techniques according to their applicability to various software engineering life cycle stages.
arXiv Detail & Related papers (2020-05-27T11:56:56Z) - Towards CRISP-ML(Q): A Machine Learning Process Model with Quality
Assurance Methodology [53.063411515511056]
We propose a process model for the development of machine learning applications.
The first phase combines business and data understanding as data availability oftentimes affects the feasibility of the project.
The sixth phase covers state-of-the-art approaches for monitoring and maintenance of a machine learning applications.
arXiv Detail & Related papers (2020-03-11T08:25:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.