論文の概要: Dynamic Iterative Refinement for Efficient 3D Hand Pose Estimation
- arxiv url: http://arxiv.org/abs/2111.06500v1
- Date: Thu, 11 Nov 2021 23:31:34 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-15 13:44:22.241482
- Title: Dynamic Iterative Refinement for Efficient 3D Hand Pose Estimation
- Title(参考訳): 効率的な3次元ハンドポース推定のための動的反復リファインメント
- Authors: John Yang, Yash Bhalgat, Simyung Chang, Fatih Porikli, Nojun Kwak
- Abstract要約: 本稿では,従来の推定値の修正に部分的レイヤを反復的に活用する,小さなディープニューラルネットワークを提案する。
学習したゲーティング基準を用いて、ウェイトシェアリングループから抜け出すかどうかを判断し、モデルにサンプルごとの適応を可能にする。
提案手法は,広く使用されているベンチマークの精度と効率の両面から,最先端の2D/3Dハンドポーズ推定手法より一貫して優れている。
- 参考スコア(独自算出の注目度): 87.54604263202941
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While hand pose estimation is a critical component of most interactive
extended reality and gesture recognition systems, contemporary approaches are
not optimized for computational and memory efficiency. In this paper, we
propose a tiny deep neural network of which partial layers are recursively
exploited for refining its previous estimations. During its iterative
refinements, we employ learned gating criteria to decide whether to exit from
the weight-sharing loop, allowing per-sample adaptation in our model. Our
network is trained to be aware of the uncertainty in its current predictions to
efficiently gate at each iteration, estimating variances after each loop for
its keypoint estimates. Additionally, we investigate the effectiveness of
end-to-end and progressive training protocols for our recursive structure on
maximizing the model capacity. With the proposed setting, our method
consistently outperforms state-of-the-art 2D/3D hand pose estimation approaches
in terms of both accuracy and efficiency for widely used benchmarks.
- Abstract(参考訳): ハンドポーズ推定は、ほとんどのインタラクティブな拡張現実とジェスチャー認識システムにおいて重要な要素であるが、現代のアプローチは計算とメモリ効率に最適化されていない。
本稿では,部分的層を再帰的に活用し,過去の推定を精査する,小さな深層ニューラルネットワークを提案する。
反復的な改良では、学習したゲーティング基準を用いて、ウェイトシェアリングループから抜け出すかどうかを決定し、モデルにサンプルごとの適応を可能にする。
我々のネットワークは、現在の予測の不確実性を認識して、各繰り返しを効率的にゲートし、各ループの後にキーポイント推定のばらつきを推定するように訓練されている。
さらに,モデル容量を最大化するための再帰的構造に対するエンドツーエンドおよびプログレッシブトレーニングプロトコルの有効性について検討した。
提案手法は, 広く使用されているベンチマークの精度と効率の両面で, 最先端の2d/3dハンドポーズ推定手法を一貫して上回っている。
関連論文リスト
- ALOcc: Adaptive Lifting-based 3D Semantic Occupancy and Cost Volume-based Flow Prediction [89.89610257714006]
既存の手法は、これらのタスクの要求に応えるために高い精度を優先する。
本稿では,3次元セマンティック占有率予測とフロー推定のための一連の改善点を紹介する。
私たちの純粋な時間的アーキテクチャフレームワークであるALOccは、速度と精度の最適なトレードオフを実現しています。
論文 参考訳(メタデータ) (2024-11-12T11:32:56Z) - Behavior-Dependent Linear Recurrent Units for Efficient Sequential Recommendation [18.75561256311228]
RecBLRは、振舞い依存リニアリカレントユニットに基づく効率的なシークエンシャルレコメンデーションモデルである。
本モデルは,ユーザの行動モデリングとレコメンデーション性能を大幅に向上させる。
論文 参考訳(メタデータ) (2024-06-18T13:06:58Z) - Modeling of learning curves with applications to pos tagging [0.27624021966289597]
トレーニングベース全体の学習曲線の進化を推定するアルゴリズムを導入する。
学習手法とは無関係に,所望のタイミングで探索値を反復的に近似する。
本提案は, 作業仮説に関して正式に正しいことを証明し, 信頼性の高い近接条件を含む。
論文 参考訳(メタデータ) (2024-02-04T15:00:52Z) - Distribution-Aware Single-Stage Models for Multi-Person 3D Pose
Estimation [29.430404703883084]
本稿では,多人数の3Dポーズ推定問題に対処する新しいDASモデルを提案する。
提案するDASモデルでは,3次元カメラ空間における人物位置と人体関節をワンパスで同時に位置決めする。
CMU Panoptic と MuPoTS-3D のベンチマークに関する総合的な実験は、提案したDASモデルの優れた効率を実証している。
論文 参考訳(メタデータ) (2022-03-15T07:30:27Z) - PDC-Net+: Enhanced Probabilistic Dense Correspondence Network [161.76275845530964]
高度確率密度対応ネットワーク(PDC-Net+)は、精度の高い高密度対応を推定できる。
我々は、堅牢で一般化可能な不確実性予測に適したアーキテクチャと強化されたトレーニング戦略を開発する。
提案手法は,複数の挑戦的幾何マッチングと光学的フローデータセットに対して,最先端の結果を得る。
論文 参考訳(メタデータ) (2021-09-28T17:56:41Z) - FasterPose: A Faster Simple Baseline for Human Pose Estimation [65.8413964785972]
本稿では,高速ポーズ推定のためのLR表現を用いた費用対効果ネットワークの設計パラダイムであるFasterPoseを提案する。
我々は,FasterPoseのトレーニング挙動について検討し,収束を加速する新しい回帰クロスエントロピー(RCE)損失関数を定式化する。
従来のポーズ推定ネットワークと比較すると,FLOPの58%が減少し,精度が1.3%向上した。
論文 参考訳(メタデータ) (2021-07-07T13:39:08Z) - SIMPLE: SIngle-network with Mimicking and Point Learning for Bottom-up
Human Pose Estimation [81.03485688525133]
Single-network with Mimicking and Point Learning for Bottom-up Human Pose Estimation (SIMPLE) を提案する。
具体的には、トレーニングプロセスにおいて、SIMPLEが高性能なトップダウンパイプラインからのポーズ知識を模倣できるようにする。
さらに、SIMPLEは人間検出とポーズ推定を統一的なポイントラーニングフレームワークとして定式化し、単一ネットワークで相互に補完する。
論文 参考訳(メタデータ) (2021-04-06T13:12:51Z) - Confidence Adaptive Anytime Pixel-Level Recognition [86.75784498879354]
任意の時間推論は、いつでも停止される可能性のある予測の進行を行うモデルを必要とする。
我々は,任意のピクセルレベルの認識に対して,最初の統一とエンドツーエンドのモデルアプローチを提案する。
論文 参考訳(メタデータ) (2021-04-01T20:01:57Z) - Deep Optimized Priors for 3D Shape Modeling and Reconstruction [38.79018852887249]
3Dモデリングと再構築のための新しい学習フレームワークを紹介します。
提案手法は,事前訓練によって制約された障壁を効果的に破壊することを示す。
論文 参考訳(メタデータ) (2020-12-14T03:56:31Z) - REDE: End-to-end Object 6D Pose Robust Estimation Using Differentiable
Outliers Elimination [15.736699709454857]
RGB-Dデータを用いた新しいエンドツーエンドオブジェクトポーズ推定器REDEを提案する。
また,候補結果と信頼度を同時に抑制する相違可能な外乱除去手法を提案する。
3つのベンチマークデータセットの実験結果は、REDEが最先端のアプローチをわずかに上回っていることを示している。
論文 参考訳(メタデータ) (2020-10-24T06:45:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。