Deep Snapshot HDR Imaging Using Multi-Exposure Color Filter Array
- URL: http://arxiv.org/abs/2011.10232v1
- Date: Fri, 20 Nov 2020 06:31:37 GMT
- Title: Deep Snapshot HDR Imaging Using Multi-Exposure Color Filter Array
- Authors: Takeru Suda, Masayuki Tanaka, Yusuke Monno, Masatoshi Okutomi
- Abstract summary: We introduce the idea of luminance normalization that simultaneously enables effective loss and input data normalization.
Experimental results using two public HDR image datasets demonstrate that our framework outperforms other snapshot methods.
- Score: 14.5106375775521
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a deep snapshot high dynamic range (HDR) imaging
framework that can effectively reconstruct an HDR image from the RAW data
captured using a multi-exposure color filter array (ME-CFA), which consists of
a mosaic pattern of RGB filters with different exposure levels. To effectively
learn the HDR image reconstruction network, we introduce the idea of luminance
normalization that simultaneously enables effective loss computation and input
data normalization by considering relative local contrasts in the
"normalized-by-luminance" HDR domain. This idea makes it possible to equally
handle the errors in both bright and dark areas regardless of absolute
luminance levels, which significantly improves the visual image quality in a
tone-mapped domain. Experimental results using two public HDR image datasets
demonstrate that our framework outperforms other snapshot methods and produces
high-quality HDR images with fewer visual artifacts.
Related papers
- HDRT: Infrared Capture for HDR Imaging [8.208995723545502]
We propose a new approach, High Dynamic Range Thermal (HDRT), for HDR acquisition using a separate, commonly available, thermal infrared (IR) sensor.
We propose a novel deep neural method (HDRTNet) which combines IR and SDR content to generate HDR images.
We show substantial quantitative and qualitative quality improvements on both over- and under-exposed images, showing that our approach is robust to capturing in multiple different lighting conditions.
arXiv Detail & Related papers (2024-06-08T13:43:44Z) - HistoHDR-Net: Histogram Equalization for Single LDR to HDR Image
Translation [12.45632443397018]
High Dynamic Range ( HDR) imaging aims to replicate the high visual quality and clarity of real-world scenes.
The literature offers various data-driven methods for HDR image reconstruction from Low Dynamic Range (LDR) counterparts.
A common limitation of these approaches is missing details in regions of the reconstructed HDR images.
We propose a simple and effective method, Histo-Net, to recover the fine details.
arXiv Detail & Related papers (2024-02-08T20:14:46Z) - Towards High-quality HDR Deghosting with Conditional Diffusion Models [88.83729417524823]
High Dynamic Range (LDR) images can be recovered from several Low Dynamic Range (LDR) images by existing Deep Neural Networks (DNNs) techniques.
DNNs still generate ghosting artifacts when LDR images have saturation and large motion.
We formulate the HDR deghosting problem as an image generation that leverages LDR features as the diffusion model's condition.
arXiv Detail & Related papers (2023-11-02T01:53:55Z) - Self-Supervised High Dynamic Range Imaging with Multi-Exposure Images in
Dynamic Scenes [58.66427721308464]
Self is a self-supervised reconstruction method that only requires dynamic multi-exposure images during training.
Self achieves superior results against the state-of-the-art self-supervised methods, and comparable performance to supervised ones.
arXiv Detail & Related papers (2023-10-03T07:10:49Z) - GlowGAN: Unsupervised Learning of HDR Images from LDR Images in the Wild [74.52723408793648]
We present the first method for learning a generative model of HDR images from in-the-wild LDR image collections in a fully unsupervised manner.
The key idea is to train a generative adversarial network (GAN) to generate HDR images which, when projected to LDR under various exposures, are indistinguishable from real LDR images.
Experiments show that our method GlowGAN can synthesize photorealistic HDR images in many challenging cases such as landscapes, lightning, or windows.
arXiv Detail & Related papers (2022-11-22T15:42:08Z) - StyleLight: HDR Panorama Generation for Lighting Estimation and Editing [98.20167223076756]
We present a new lighting estimation and editing framework to generate high-dynamic-range (GAN) indoor panorama lighting from a single field-of-view (LFOV) image.
Our framework achieves superior performance over state-of-the-art methods on indoor lighting estimation.
arXiv Detail & Related papers (2022-07-29T17:58:58Z) - FlexHDR: Modelling Alignment and Exposure Uncertainties for Flexible HDR
Imaging [0.9185931275245008]
We present a new HDR imaging technique that models alignment and exposure uncertainties to produce high quality HDR results.
We introduce a strategy that learns to jointly align and assess the alignment and exposure reliability using an HDR-aware, uncertainty-driven attention map.
Experimental results show our method can produce better quality HDR images with up to 0.8dB PSNR improvement to the state-of-the-art.
arXiv Detail & Related papers (2022-01-07T14:27:17Z) - HDR-NeRF: High Dynamic Range Neural Radiance Fields [70.80920996881113]
We present High Dynamic Range Neural Radiance Fields (-NeRF) to recover an HDR radiance field from a set of low dynamic range (LDR) views with different exposures.
We are able to generate both novel HDR views and novel LDR views under different exposures.
arXiv Detail & Related papers (2021-11-29T11:06:39Z) - HDR-cGAN: Single LDR to HDR Image Translation using Conditional GAN [24.299931323012757]
Low Dynamic Range (LDR) cameras are incapable of representing the wide dynamic range of the real-world scene.
We propose a deep learning based approach to recover details in the saturated areas while reconstructing the HDR image.
We present a novel conditional GAN (cGAN) based framework trained in an end-to-end fashion over the HDR-REAL and HDR-SYNTH datasets.
arXiv Detail & Related papers (2021-10-04T18:50:35Z) - Luminance Attentive Networks for HDR Image and Panorama Reconstruction [37.364335148790005]
It is difficult to reconstruct a high inverse range from a low dynamic range (LDR) image as an ill-posed problem.
This paper proposes a attentive luminance network named LANet for HDR reconstruction from a single LDR image.
arXiv Detail & Related papers (2021-09-14T13:44:34Z) - HDR-GAN: HDR Image Reconstruction from Multi-Exposed LDR Images with
Large Motions [62.44802076971331]
We propose a novel GAN-based model, HDR-GAN, for synthesizing HDR images from multi-exposed LDR images.
By incorporating adversarial learning, our method is able to produce faithful information in the regions with missing content.
arXiv Detail & Related papers (2020-07-03T11:42:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.