HistoHDR-Net: Histogram Equalization for Single LDR to HDR Image
Translation
- URL: http://arxiv.org/abs/2402.06692v1
- Date: Thu, 8 Feb 2024 20:14:46 GMT
- Title: HistoHDR-Net: Histogram Equalization for Single LDR to HDR Image
Translation
- Authors: Hrishav Bakul Barua, Ganesh Krishnasamy, KokSheik Wong, Abhinav Dhall,
Kalin Stefanov
- Abstract summary: High Dynamic Range ( HDR) imaging aims to replicate the high visual quality and clarity of real-world scenes.
The literature offers various data-driven methods for HDR image reconstruction from Low Dynamic Range (LDR) counterparts.
A common limitation of these approaches is missing details in regions of the reconstructed HDR images.
We propose a simple and effective method, Histo-Net, to recover the fine details.
- Score: 12.45632443397018
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: High Dynamic Range (HDR) imaging aims to replicate the high visual quality
and clarity of real-world scenes. Due to the high costs associated with HDR
imaging, the literature offers various data-driven methods for HDR image
reconstruction from Low Dynamic Range (LDR) counterparts. A common limitation
of these approaches is missing details in regions of the reconstructed HDR
images, which are over- or under-exposed in the input LDR images. To this end,
we propose a simple and effective method, HistoHDR-Net, to recover the fine
details (e.g., color, contrast, saturation, and brightness) of HDR images via a
fusion-based approach utilizing histogram-equalized LDR images along with
self-attention guidance. Our experiments demonstrate the efficacy of the
proposed approach over the state-of-art methods.
Related papers
- A Cycle Ride to HDR: Semantics Aware Self-Supervised Framework for Unpaired LDR-to-HDR Image Translation [0.0]
Low Dynamic Range (LDR) to High Dynamic Range () image translation is an important computer vision problem.
Most current state-of-the-art methods require high-quality paired LDR, datasets for model training.
We propose a modified cycle-consistent adversarial architecture and utilize unpaired LDR, datasets for training.
arXiv Detail & Related papers (2024-10-19T11:11:58Z) - Generating Content for HDR Deghosting from Frequency View [56.103761824603644]
Recent Diffusion Models (DMs) have been introduced in HDR imaging field.
DMs require extensive iterations with large models to estimate entire images.
We propose the Low-Frequency aware Diffusion (LF-Diff) model for ghost-free HDR imaging.
arXiv Detail & Related papers (2024-04-01T01:32:11Z) - Self-Supervised High Dynamic Range Imaging with Multi-Exposure Images in
Dynamic Scenes [58.66427721308464]
Self is a self-supervised reconstruction method that only requires dynamic multi-exposure images during training.
Self achieves superior results against the state-of-the-art self-supervised methods, and comparable performance to supervised ones.
arXiv Detail & Related papers (2023-10-03T07:10:49Z) - GlowGAN: Unsupervised Learning of HDR Images from LDR Images in the Wild [74.52723408793648]
We present the first method for learning a generative model of HDR images from in-the-wild LDR image collections in a fully unsupervised manner.
The key idea is to train a generative adversarial network (GAN) to generate HDR images which, when projected to LDR under various exposures, are indistinguishable from real LDR images.
Experiments show that our method GlowGAN can synthesize photorealistic HDR images in many challenging cases such as landscapes, lightning, or windows.
arXiv Detail & Related papers (2022-11-22T15:42:08Z) - Hybrid Saturation Restoration for LDR Images of HDR Scenes [18.61019008000831]
In this paper, the saturated regions of the LDR image are restored by fusing model-based and data-driven approaches.
Two synthetic LDR images are first generated from the underlying LDR image via the model-based approach.
One is brighter than the input image to restore the shadow regions and the other is darker than the input image to restore the high-light regions.
arXiv Detail & Related papers (2021-11-11T03:20:32Z) - HDR-cGAN: Single LDR to HDR Image Translation using Conditional GAN [24.299931323012757]
Low Dynamic Range (LDR) cameras are incapable of representing the wide dynamic range of the real-world scene.
We propose a deep learning based approach to recover details in the saturated areas while reconstructing the HDR image.
We present a novel conditional GAN (cGAN) based framework trained in an end-to-end fashion over the HDR-REAL and HDR-SYNTH datasets.
arXiv Detail & Related papers (2021-10-04T18:50:35Z) - NTIRE 2021 Challenge on High Dynamic Range Imaging: Dataset, Methods and
Results [56.932867490888015]
This paper reviews the first challenge on high-dynamic range imaging that was part of the New Trends in Image Restoration and Enhancement (NTIRE) workshop, held in conjunction with CVPR 2021.
The challenge aims at estimating a HDR image from one or multiple respective low-dynamic range (LDR) observations, which might suffer from under- or over-exposed regions and different sources of noise.
arXiv Detail & Related papers (2021-06-02T19:45:16Z) - A Two-stage Deep Network for High Dynamic Range Image Reconstruction [0.883717274344425]
This study tackles the challenges of single-shot LDR to HDR mapping by proposing a novel two-stage deep network.
Notably, our proposed method aims to reconstruct an HDR image without knowing hardware information, including camera response function (CRF) and exposure settings.
arXiv Detail & Related papers (2021-04-19T15:19:17Z) - Beyond Visual Attractiveness: Physically Plausible Single Image HDR
Reconstruction for Spherical Panoramas [60.24132321381606]
We introduce the physical illuminance constraints to our single-shot HDR reconstruction framework.
Our method can generate HDRs which are not only visually appealing but also physically plausible.
arXiv Detail & Related papers (2021-03-24T01:51:19Z) - HDR-GAN: HDR Image Reconstruction from Multi-Exposed LDR Images with
Large Motions [62.44802076971331]
We propose a novel GAN-based model, HDR-GAN, for synthesizing HDR images from multi-exposed LDR images.
By incorporating adversarial learning, our method is able to produce faithful information in the regions with missing content.
arXiv Detail & Related papers (2020-07-03T11:42:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.