Solving nonlinear differential equations with differentiable quantum
circuits
- URL: http://arxiv.org/abs/2011.10395v2
- Date: Tue, 18 May 2021 23:49:32 GMT
- Title: Solving nonlinear differential equations with differentiable quantum
circuits
- Authors: Oleksandr Kyriienko, Annie E. Paine, Vincent E. Elfving
- Abstract summary: We propose a quantum algorithm to solve systems of nonlinear differential equations.
We use automatic differentiation to represent function derivatives in an analytical form as differentiable quantum circuits.
We show how this approach can implement a spectral method for solving differential equations in a high-dimensional feature space.
- Score: 21.24186888129542
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a quantum algorithm to solve systems of nonlinear differential
equations. Using a quantum feature map encoding, we define functions as
expectation values of parametrized quantum circuits. We use automatic
differentiation to represent function derivatives in an analytical form as
differentiable quantum circuits (DQCs), thus avoiding inaccurate finite
difference procedures for calculating gradients. We describe a hybrid
quantum-classical workflow where DQCs are trained to satisfy differential
equations and specified boundary conditions. As a particular example setting,
we show how this approach can implement a spectral method for solving
differential equations in a high-dimensional feature space. From a technical
perspective, we design a Chebyshev quantum feature map that offers a powerful
basis set of fitting polynomials and possesses rich expressivity. We simulate
the algorithm to solve an instance of Navier-Stokes equations, and compute
density, temperature and velocity profiles for the fluid flow in a
convergent-divergent nozzle.
Related papers
- A two-circuit approach to reducing quantum resources for the quantum lattice Boltzmann method [41.66129197681683]
Current quantum algorithms for solving CFD problems use a single quantum circuit and, in some cases, lattice-based methods.
We introduce the a novel multiple circuits algorithm that makes use of a quantum lattice Boltzmann method (QLBM)
The problem is cast as a stream function--vorticity formulation of the 2D Navier-Stokes equations and verified and tested on a 2D lid-driven cavity flow.
arXiv Detail & Related papers (2024-01-20T15:32:01Z) - Real-time error mitigation for variational optimization on quantum
hardware [45.935798913942904]
We define a Real Time Quantum Error Mitigation (RTQEM) algorithm to assist in fitting functions on quantum chips with VQCs.
Our RTQEM routine can enhance VQCs' trainability by reducing the corruption of the loss function.
arXiv Detail & Related papers (2023-11-09T19:00:01Z) - Physics-Informed Quantum Machine Learning: Solving nonlinear
differential equations in latent spaces without costly grid evaluations [21.24186888129542]
We propose a physics-informed quantum algorithm to solve nonlinear and multidimensional differential equations.
By measuring the overlaps between states which are representations of DE terms, we construct a loss that does not require independent sequential function evaluations on grid points.
When the loss is trained variationally, our approach can be related to the differentiable quantum circuit protocol.
arXiv Detail & Related papers (2023-08-03T15:38:31Z) - Variational Quantum Simulation of Partial Differential Equations:
Applications in Colloidal Transport [0.0]
We show that real-amplitude ansaetze with full circular entangling layers lead to higher-fidelity solutions.
To efficiently encode impulse functions, we propose a graphical mapping technique for quantum states.
arXiv Detail & Related papers (2023-07-14T05:51:57Z) - Wasserstein Quantum Monte Carlo: A Novel Approach for Solving the
Quantum Many-Body Schr\"odinger Equation [56.9919517199927]
"Wasserstein Quantum Monte Carlo" (WQMC) uses the gradient flow induced by the Wasserstein metric, rather than Fisher-Rao metric, and corresponds to transporting the probability mass, rather than teleporting it.
We demonstrate empirically that the dynamics of WQMC results in faster convergence to the ground state of molecular systems.
arXiv Detail & Related papers (2023-07-06T17:54:08Z) - Efficient estimation of trainability for variational quantum circuits [43.028111013960206]
We find an efficient method to compute the cost function and its variance for a wide class of variational quantum circuits.
This method can be used to certify trainability for variational quantum circuits and explore design strategies that can overcome the barren plateau problem.
arXiv Detail & Related papers (2023-02-09T14:05:18Z) - Correspondence between open bosonic systems and stochastic differential
equations [77.34726150561087]
We show that there can also be an exact correspondence at finite $n$ when the bosonic system is generalized to include interactions with the environment.
A particular system with the form of a discrete nonlinear Schr"odinger equation is analyzed in more detail.
arXiv Detail & Related papers (2023-02-03T19:17:37Z) - Symbolic Recovery of Differential Equations: The Identifiability Problem [52.158782751264205]
Symbolic recovery of differential equations is the ambitious attempt at automating the derivation of governing equations.
We provide both necessary and sufficient conditions for a function to uniquely determine the corresponding differential equation.
We then use our results to devise numerical algorithms aiming to determine whether a function solves a differential equation uniquely.
arXiv Detail & Related papers (2022-10-15T17:32:49Z) - Qade: Solving Differential Equations on Quantum Annealers [0.0]
We present a general method, called Qade, for solving differential equations using a quantum annealer.
On current devices, Qade can solve systems of coupled partial differential equations that depend linearly on the solution and its derivatives.
arXiv Detail & Related papers (2022-04-07T18:00:00Z) - Quantum Kernel Methods for Solving Differential Equations [21.24186888129542]
We propose several approaches for solving differential equations (DEs) with quantum kernel methods.
We compose quantum models as weighted sums of kernel functions, where variables are encoded using feature maps and model derivatives are represented.
arXiv Detail & Related papers (2022-03-16T18:56:35Z) - Solving Differential Equations via Continuous-Variable Quantum Computers [0.0]
We explore how a continuous-dimensional (CV) quantum computer could solve a classic differential equation, making use of its innate capability to represent real numbers in qumodes.
Our simulations and parameter optimization using the PennyLane / Strawberry Fields framework demonstrate good both linear and non-linear ODEs.
arXiv Detail & Related papers (2020-12-22T18:06:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.