Real-time error mitigation for variational optimization on quantum
hardware
- URL: http://arxiv.org/abs/2311.05680v2
- Date: Wed, 29 Nov 2023 18:48:13 GMT
- Title: Real-time error mitigation for variational optimization on quantum
hardware
- Authors: Matteo Robbiati, Alejandro Sopena, Andrea Papaluca, Stefano Carrazza
- Abstract summary: We define a Real Time Quantum Error Mitigation (RTQEM) algorithm to assist in fitting functions on quantum chips with VQCs.
Our RTQEM routine can enhance VQCs' trainability by reducing the corruption of the loss function.
- Score: 45.935798913942904
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work we put forward the inclusion of error mitigation routines in the
process of training Variational Quantum Circuit (VQC) models. In detail, we
define a Real Time Quantum Error Mitigation (RTQEM) algorithm to assist in
fitting functions on quantum chips with VQCs. While state-of-the-art QEM
methods cannot address the exponential loss concentration induced by noise in
current devices, we demonstrate that our RTQEM routine can enhance VQCs'
trainability by reducing the corruption of the loss function. We tested the
algorithm by simulating and deploying the fit of a monodimensional
$\textit{u}$-Quark Parton Distribution Function (PDF) on a superconducting
single-qubit device, and we further analyzed the scalability of the proposed
technique by simulating a multidimensional fit with up to 8 qubits.
Related papers
- Efficient Classical Computation of Single-Qubit Marginal Measurement Probabilities to Simulate Certain Classes of Quantum Algorithms [0.0]
We introduce a novel CNOT "functional" that leverages neural networks to generate unitary transformations.
For random circuit simulations, our modified QC-DFT enables efficient computation of single-qubit marginal measurement probabilities.
arXiv Detail & Related papers (2024-11-11T09:30:33Z) - Scalable quantum dynamics compilation via quantum machine learning [7.31922231703204]
variational quantum compilation (VQC) methods employ variational optimization to reduce gate costs while maintaining high accuracy.
We show that our approach exceeds state-of-the-art compilation results in both system size and accuracy in one dimension ($1$D)
For the first time, we extend VQC to systems on two-dimensional (2D) strips with a quasi-1D treatment, demonstrating a significant resource advantage over standard Trotterization methods.
arXiv Detail & Related papers (2024-09-24T18:00:00Z) - Adaptive variational quantum dynamics simulations with compressed circuits and fewer measurements [4.2643127089535104]
We show an improved version of the adaptive variational quantum dynamics simulation (AVQDS) method, which we call AVQDS(T)
The algorithm adaptively adds layers of disjoint unitary gates to the ansatz circuit so as to keep the McLachlan distance, a measure of the accuracy of the variational dynamics, below a fixed threshold.
We also show a method based on eigenvalue truncation to solve the linear equations of motion for the variational parameters with enhanced noise resilience.
arXiv Detail & Related papers (2024-08-13T02:56:43Z) - Efficient variational quantum eigensolver methodologies on quantum processors [4.192048933715544]
We implement adaptive, tetris-adaptive variational quantum eigensolver (VQE) and entanglement forging to reduce computational resource requirements.
Our results affirm the usefulness of VQE on noisy quantum hardware and pave the way for the usage of VQE related methods for large molecules.
arXiv Detail & Related papers (2024-07-23T00:38:34Z) - Mitigating Errors on Superconducting Quantum Processors through Fuzzy
Clustering [38.02852247910155]
A new Quantum Error Mitigation (QEM) technique uses Fuzzy C-Means clustering to specifically identify measurement error patterns.
We report a proof-of-principle validation of the technique on a 2-qubit register, obtained as a subset of a real NISQ 5-qubit superconducting quantum processor.
We demonstrate that the FCM-based QEM technique allows for reasonable improvement of the expectation values of single- and two-qubit gates based quantum circuits.
arXiv Detail & Related papers (2024-02-02T14:02:45Z) - Shuffle-QUDIO: accelerate distributed VQE with trainability enhancement
and measurement reduction [77.97248520278123]
We propose Shuffle-QUDIO to involve shuffle operations into local Hamiltonians during the quantum distributed optimization.
Compared with QUDIO, Shuffle-QUDIO significantly reduces the communication frequency among quantum processors and simultaneously achieves better trainability.
arXiv Detail & Related papers (2022-09-26T06:51:20Z) - Quantum circuit architecture search on a superconducting processor [56.04169357427682]
Variational quantum algorithms (VQAs) have shown strong evidences to gain provable computational advantages for diverse fields such as finance, machine learning, and chemistry.
However, the ansatz exploited in modern VQAs is incapable of balancing the tradeoff between expressivity and trainability.
We demonstrate the first proof-of-principle experiment of applying an efficient automatic ansatz design technique to enhance VQAs on an 8-qubit superconducting quantum processor.
arXiv Detail & Related papers (2022-01-04T01:53:42Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model.
Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models.
This work presents the first computation of the Mott phase transition using noisy digital quantum hardware.
arXiv Detail & Related papers (2021-12-10T17:32:15Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.