The Impact of Data on the Stability of Learning-Based Control- Extended
Version
- URL: http://arxiv.org/abs/2011.10596v2
- Date: Fri, 30 Jul 2021 13:25:43 GMT
- Title: The Impact of Data on the Stability of Learning-Based Control- Extended
Version
- Authors: Armin Lederer, Alexandre Capone, Thomas Beckers, Jonas Umlauft, Sandra
Hirche
- Abstract summary: We propose a Lyapunov-based measure for quantifying the impact of data on the certifiable control performance.
By modeling unknown system dynamics through Gaussian processes, we can determine the interrelation between model uncertainty and satisfaction of stability conditions.
- Score: 63.97366815968177
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the existence of formal guarantees for learning-based control
approaches, the relationship between data and control performance is still
poorly understood. In this paper, we propose a Lyapunov-based measure for
quantifying the impact of data on the certifiable control performance. By
modeling unknown system dynamics through Gaussian processes, we can determine
the interrelation between model uncertainty and satisfaction of stability
conditions. This allows us to directly asses the impact of data on the provable
stationary control performance, and thereby the value of the data for the
closed-loop system performance. Our approach is applicable to a wide variety of
unknown nonlinear systems that are to be controlled by a generic learning-based
control law, and the results obtained in numerical simulations indicate the
efficacy of the proposed measure.
Related papers
- Learning-Based Optimal Control with Performance Guarantees for Unknown Systems with Latent States [4.4820711784498]
This paper proposes a novel method for the computation of an optimal input trajectory for unknown nonlinear systems with latent states.
The effectiveness of the proposed method is demonstrated in a numerical simulation.
arXiv Detail & Related papers (2023-03-31T11:06:09Z) - In-Distribution Barrier Functions: Self-Supervised Policy Filters that
Avoid Out-of-Distribution States [84.24300005271185]
We propose a control filter that wraps any reference policy and effectively encourages the system to stay in-distribution with respect to offline-collected safe demonstrations.
Our method is effective for two different visuomotor control tasks in simulation environments, including both top-down and egocentric view settings.
arXiv Detail & Related papers (2023-01-27T22:28:19Z) - Probabilistic robust linear quadratic regulators with Gaussian processes [73.0364959221845]
Probabilistic models such as Gaussian processes (GPs) are powerful tools to learn unknown dynamical systems from data for subsequent use in control design.
We present a novel controller synthesis for linearized GP dynamics that yields robust controllers with respect to a probabilistic stability margin.
arXiv Detail & Related papers (2021-05-17T08:36:18Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
In imitation learning from observation IfO, a learning agent seeks to imitate a demonstrating agent using only observations of the demonstrated behavior without access to the control signals generated by the demonstrator.
Recent methods based on adversarial imitation learning have led to state-of-the-art performance on IfO problems, but they typically suffer from high sample complexity due to a reliance on data-inefficient, model-free reinforcement learning algorithms.
This issue makes them impractical to deploy in real-world settings, where gathering samples can incur high costs in terms of time, energy, and risk.
We propose a more data-efficient IfO algorithm
arXiv Detail & Related papers (2021-03-31T23:46:32Z) - Robust Data-Driven Predictive Control using Reachability Analysis [6.686241050151697]
We present a robust data-driven control scheme for unknown linear systems with a bounded process and measurement noise.
The data-driven reachable regions are computed based on only noisy input-output data of a trajectory of the system.
In the noise-free case, we prove that the presented purely data-driven control scheme results in an equivalent closed-loop behavior to a nominal model predictive control scheme.
arXiv Detail & Related papers (2021-03-25T19:55:15Z) - Anticipating the Long-Term Effect of Online Learning in Control [75.6527644813815]
AntLer is a design algorithm for learning-based control laws that anticipates learning.
We show that AntLer approximates an optimal solution arbitrarily accurately with probability one.
arXiv Detail & Related papers (2020-07-24T07:00:14Z) - How Training Data Impacts Performance in Learning-based Control [67.7875109298865]
This paper derives an analytical relationship between the density of the training data and the control performance.
We formulate a quality measure for the data set, which we refer to as $rho$-gap.
We show how the $rho$-gap can be applied to a feedback linearizing control law.
arXiv Detail & Related papers (2020-05-25T12:13:49Z) - Learning Constrained Adaptive Differentiable Predictive Control Policies
With Guarantees [1.1086440815804224]
We present differentiable predictive control (DPC), a method for learning constrained neural control policies for linear systems.
We employ automatic differentiation to obtain direct policy gradients by backpropagating the model predictive control (MPC) loss function and constraints penalties through a differentiable closed-loop system dynamics model.
arXiv Detail & Related papers (2020-04-23T14:24:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.