A non-autonomous equation discovery method for time signal
classification
- URL: http://arxiv.org/abs/2011.11096v1
- Date: Sun, 22 Nov 2020 20:03:46 GMT
- Title: A non-autonomous equation discovery method for time signal
classification
- Authors: Ryeongkyung Yoon, Harish S. Bhat, Braxton Osting
- Abstract summary: We develop a framework for analyzing time signals based on non-autonomous dynamical equations.
We show how gradients can be efficiently computed using the adjoint method.
We also demonstrate how the proposed method yields interpretability in the form of phase portraits.
- Score: 1.933681537640272
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Certain neural network architectures, in the infinite-layer limit, lead to
systems of nonlinear differential equations. Motivated by this idea, we develop
a framework for analyzing time signals based on non-autonomous dynamical
equations. We view the time signal as a forcing function for a dynamical system
that governs a time-evolving hidden variable. As in equation discovery, the
dynamical system is represented using a dictionary of functions and the
coefficients are learned from data. This framework is applied to the time
signal classification problem. We show how gradients can be efficiently
computed using the adjoint method, and we apply methods from dynamical systems
to establish stability of the classifier. Through a variety of experiments, on
both synthetic and real datasets, we show that the proposed method uses orders
of magnitude fewer parameters than competing methods, while achieving
comparable accuracy. We created the synthetic datasets using dynamical systems
of increasing complexity; though the ground truth vector fields are often
polynomials, we find consistently that a Fourier dictionary yields the best
results. We also demonstrate how the proposed method yields graphical
interpretability in the form of phase portraits.
Related papers
- Learning Controlled Stochastic Differential Equations [61.82896036131116]
This work proposes a novel method for estimating both drift and diffusion coefficients of continuous, multidimensional, nonlinear controlled differential equations with non-uniform diffusion.
We provide strong theoretical guarantees, including finite-sample bounds for (L2), (Linfty), and risk metrics, with learning rates adaptive to coefficients' regularity.
Our method is available as an open-source Python library.
arXiv Detail & Related papers (2024-11-04T11:09:58Z) - Physics-informed AI and ML-based sparse system identification algorithm for discovery of PDE's representing nonlinear dynamic systems [0.0]
The proposed method is demonstrated to discover various differential equations at various noise levels, including three-dimensional, fourth-order, and stiff equations.
The parameter estimation converges accurately to the true values with a small coefficient of variation, suggesting robustness to the noise.
arXiv Detail & Related papers (2024-10-13T21:48:51Z) - Deep Generative Modeling for Identification of Noisy, Non-Stationary Dynamical Systems [3.1484174280822845]
We focus on finding parsimonious ordinary differential equation (ODE) models for nonlinear, noisy, and non-autonomous dynamical systems.
Our method, dynamic SINDy, combines variational inference with SINDy (sparse identification of nonlinear dynamics) to model time-varying coefficients of sparse ODEs.
arXiv Detail & Related papers (2024-10-02T23:00:00Z) - Learning invariant representations of time-homogeneous stochastic dynamical systems [27.127773672738535]
We study the problem of learning a representation of the state that faithfully captures its dynamics.
This is instrumental to learning the transfer operator or the generator of the system.
We show that the search for a good representation can be cast as an optimization problem over neural networks.
arXiv Detail & Related papers (2023-07-19T11:32:24Z) - Automatically identifying ordinary differential equations from data [0.0]
We propose a methodology to identify dynamical laws by integrating denoising techniques to smooth the signal.
We evaluate our method on well-known ordinary differential equations with an ensemble of random initial conditions.
arXiv Detail & Related papers (2023-04-21T18:00:03Z) - Semi-supervised Learning of Partial Differential Operators and Dynamical
Flows [68.77595310155365]
We present a novel method that combines a hyper-network solver with a Fourier Neural Operator architecture.
We test our method on various time evolution PDEs, including nonlinear fluid flows in one, two, and three spatial dimensions.
The results show that the new method improves the learning accuracy at the time point of supervision point, and is able to interpolate and the solutions to any intermediate time.
arXiv Detail & Related papers (2022-07-28T19:59:14Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - Discovery of Nonlinear Dynamical Systems using a Runge-Kutta Inspired
Dictionary-based Sparse Regression Approach [9.36739413306697]
We blend machine learning and dictionary-based learning with numerical analysis tools to discover governing differential equations.
We obtain interpretable and parsimonious models which are prone to generalize better beyond the sampling regime.
We discuss its extension to governing equations, containing rational nonlinearities that typically appear in biological networks.
arXiv Detail & Related papers (2021-05-11T08:46:51Z) - DiffPD: Differentiable Projective Dynamics with Contact [65.88720481593118]
We present DiffPD, an efficient differentiable soft-body simulator with implicit time integration.
We evaluate the performance of DiffPD and observe a speedup of 4-19 times compared to the standard Newton's method in various applications.
arXiv Detail & Related papers (2021-01-15T00:13:33Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z) - Learned Factor Graphs for Inference from Stationary Time Sequences [107.63351413549992]
We propose a framework that combines model-based algorithms and data-driven ML tools for stationary time sequences.
neural networks are developed to separately learn specific components of a factor graph describing the distribution of the time sequence.
We present an inference algorithm based on learned stationary factor graphs, which learns to implement the sum-product scheme from labeled data.
arXiv Detail & Related papers (2020-06-05T07:06:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.