論文の概要: Cancer image classification based on DenseNet model
- arxiv url: http://arxiv.org/abs/2011.11186v1
- Date: Mon, 23 Nov 2020 03:05:42 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-22 01:34:42.132349
- Title: Cancer image classification based on DenseNet model
- Title(参考訳): DenseNetモデルに基づく癌画像の分類
- Authors: Ziliang Zhong, Muhang Zheng, Huafeng Mai, Jianan Zhao, Xinyi Liu
- Abstract要約: DenseNet Blockに基づく新しい転移性癌画像分類モデルを提案する。
PatchCamelyon(PCam)ベンチマークデータセットのわずかに修正されたバージョンに対する提案手法の評価を行った。
- 参考スコア(独自算出の注目度): 3.3516258832067067
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Computer-aided diagnosis establishes methods for robust assessment of medical
image-based examination. Image processing introduced a promising strategy to
facilitate disease classification and detection while diminishing unnecessary
expenses. In this paper, we propose a novel metastatic cancer image
classification model based on DenseNet Block, which can effectively identify
metastatic cancer in small image patches taken from larger digital pathology
scans. We evaluate the proposed approach to the slightly modified version of
the PatchCamelyon (PCam) benchmark dataset. The dataset is the slightly
modified version of the PatchCamelyon (PCam) benchmark dataset provided by
Kaggle competition, which packs the clinically-relevant task of metastasis
detection into a straight-forward binary image classification task. The
experiments indicated that our model outperformed other classical methods like
Resnet34, Vgg19. Moreover, we also conducted data augmentation experiment and
study the relationship between Batches processed and loss value during the
training and validation process.
- Abstract(参考訳): コンピュータ支援診断は、医用画像に基づく検査の堅牢な評価方法を確立する。
画像処理は、不要な費用を削減しつつ、病気の分類と検出を容易にする有望な戦略を導入した。
本稿では,より大規模なデジタル病理診断から採取した小さな画像パッチを用いて,転移性癌を効果的に同定する,deepnetブロックに基づく新しい転移性癌の画像分類モデルを提案する。
PatchCamelyon(PCam)ベンチマークデータセットのわずかに修正されたバージョンに対する提案手法を評価する。
データセットは、kaggle competitionが提供するpatchcamelyon(pcam)ベンチマークデータセットのわずかに修正されたバージョンであり、転移検出の臨床的関連タスクを直進二進画像分類タスクに詰め込む。
実験の結果,本モデルはresnet34,vgg19などの古典的手法よりも優れていた。
さらに,データ拡張実験を行い,訓練および検証過程におけるバッチ処理と損失値の関係について検討した。
関連論文リスト
- Breast Cancer Image Classification Method Based on Deep Transfer Learning [40.392772795903795]
深層学習と転写学習を組み合わせた乳癌画像分類モデルを提案する。
実験結果から, アルゴリズムは, 従来のモデルに比べて分類精度が有意に向上し, テストセットの84.0%以上の効率を達成することが示された。
論文 参考訳(メタデータ) (2024-04-14T12:09:47Z) - MedFMC: A Real-world Dataset and Benchmark For Foundation Model
Adaptation in Medical Image Classification [41.16626194300303]
ファンデーションモデルは、多くの場合、大規模なデータで事前訓練されているが、様々なビジョンや言語アプリケーションのジャンプ開始において、最も成功している。
最近の進歩により、下流タスクにおける基礎モデルの適応は、少数のトレーニングサンプルだけで効率的に行えるようになった。
しかし, 医用画像解析におけるそのような学習パラダイムの適用は, 一般に公開されているデータやベンチマークが不足しているため, 依然として少ない。
論文 参考訳(メタデータ) (2023-06-16T01:46:07Z) - Significantly improving zero-shot X-ray pathology classification via fine-tuning pre-trained image-text encoders [50.689585476660554]
本稿では,正対損失緩和とランダムな文サンプリングを含む新たな微調整手法を提案する。
提案手法は,胸部X線データセットと3つの事前訓練モデル間のゼロショット病理分類を一貫して改善する。
論文 参考訳(メタデータ) (2022-12-14T06:04:18Z) - Stain-invariant self supervised learning for histopathology image
analysis [74.98663573628743]
乳がんのヘマトキシリンおよびエオシン染色像におけるいくつかの分類課題に対する自己監督アルゴリズムを提案する。
本手法は,いくつかの乳がんデータセット上での最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2022-11-14T18:16:36Z) - Application of Transfer Learning and Ensemble Learning in Image-level
Classification for Breast Histopathology [9.037868656840736]
CAD(Computer-Aided Diagnosis)では、従来の分類モデルでは、主に1つのネットワークを使って特徴を抽出する。
本稿では良性病変と悪性病変のバイナリ分類のための画像レベルラベルに基づく深層アンサンブルモデルを提案する。
結果: アンサンブルネットワークモデルにおいて、画像レベルのバイナリ分類は9,8.90%の精度を達成する。
論文 参考訳(メタデータ) (2022-04-18T13:31:53Z) - Ensemble of CNN classifiers using Sugeno Fuzzy Integral Technique for
Cervical Cytology Image Classification [1.6986898305640261]
頸がんの単細胞画像とスライド画像の分類を完全自動化するコンピュータ支援診断ツールを提案する。
我々は、Sugeno Fuzzy Integralを使用して、Inception v3、DenseNet-161、ResNet-34という3つの人気のあるディープラーニングモデルの意思決定スコアをアンサンブルする。
論文 参考訳(メタデータ) (2021-08-21T08:41:41Z) - Malignancy Prediction and Lesion Identification from Clinical
Dermatological Images [65.1629311281062]
臨床皮膚画像から機械学習に基づく悪性度予測と病変の同定を検討する。
まず, サブタイプや悪性度に関わらず画像に存在するすべての病変を同定し, その悪性度を推定し, 凝集により, 画像レベルの悪性度も生成する。
論文 参考訳(メタデータ) (2021-04-02T20:52:05Z) - Metastatic Cancer Image Classification Based On Deep Learning Method [7.832709940526033]
画像分類におけるディープラーニングアルゴリズム, DenseNet169 フレームワーク, Rectified Adam 最適化アルゴリズムを併用したNoval法を提案する。
我々のモデルは、Vgg19、Resnet34、Resnet50のような他の古典的畳み込みニューラルネットワークアプローチよりも優れた性能を実現する。
論文 参考訳(メタデータ) (2020-11-13T16:04:39Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z) - Multi-label Thoracic Disease Image Classification with Cross-Attention
Networks [65.37531731899837]
胸部X線画像から胸部疾患を自動分類するためのCAN(Cross-Attention Networks)を提案する。
また,クロスエントロピー損失を超える新たな損失関数を設計し,クラス間の不均衡を克服する。
論文 参考訳(メタデータ) (2020-07-21T14:37:00Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
医用画像分類のための関係駆動型半教師付きフレームワークを提案する。
これは、摂動下で与えられた入力の予測一貫性を促進することでラベルのないデータを利用する。
本手法は,シングルラベルおよびマルチラベル画像分類のシナリオにおいて,最先端の半教師付き学習手法よりも優れる。
論文 参考訳(メタデータ) (2020-05-15T06:57:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。