Online Learning Based Risk-Averse Stochastic MPC of Constrained Linear
Uncertain Systems
- URL: http://arxiv.org/abs/2011.11441v1
- Date: Fri, 20 Nov 2020 13:00:28 GMT
- Title: Online Learning Based Risk-Averse Stochastic MPC of Constrained Linear
Uncertain Systems
- Authors: Chao Ning, Fengqi You
- Abstract summary: This paper investigates the problem of designing data-driven Model Predictive Control (MPC) for linear time-invariant systems under additive disturbance.
We propose a novel online learning based risk-varying MPC framework in which Conditional Value-at-Risk (CVaR) constraints are required to hold for a family of distributions called an ambiguity set.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper investigates the problem of designing data-driven stochastic Model
Predictive Control (MPC) for linear time-invariant systems under additive
stochastic disturbance, whose probability distribution is unknown but can be
partially inferred from data. We propose a novel online learning based
risk-averse stochastic MPC framework in which Conditional Value-at-Risk (CVaR)
constraints on system states are required to hold for a family of distributions
called an ambiguity set. The ambiguity set is constructed from disturbance data
by leveraging a Dirichlet process mixture model that is self-adaptive to the
underlying data structure and complexity. Specifically, the structural property
of multimodality is exploit-ed, so that the first- and second-order moment
information of each mixture component is incorporated into the ambiguity set. A
novel constraint tightening strategy is then developed based on an equivalent
reformulation of distributionally ro-bust CVaR constraints over the proposed
ambiguity set. As more data are gathered during the runtime of the controller,
the ambiguity set is updated online using real-time disturbance data, which
enables the risk-averse stochastic MPC to cope with time-varying disturbance
distributions. The online variational inference algorithm employed does not
require all collected data be learned from scratch, and therefore the proposed
MPC is endowed with the guaranteed computational complexity of online learning.
The guarantees on recursive feasibility and closed-loop stability of the
proposed MPC are established via a safe update scheme. Numerical examples are
used to illustrate the effectiveness and advantages of the proposed MPC.
Related papers
- Integrating Reinforcement Learning and Model Predictive Control with Applications to Microgrids [14.389086937116582]
This work proposes an approach that integrates reinforcement learning and model predictive control (MPC) to solve optimal control problems in mixed-logical dynamical systems.
The proposed method significantly reduces the online computation time of the MPC approach and that it generates policies with small optimality gaps and high feasibility rates.
arXiv Detail & Related papers (2024-09-17T15:17:16Z) - Sample Complexity of Offline Distributionally Robust Linear Markov Decision Processes [37.15580574143281]
offline reinforcement learning (RL)
This paper considers the sample complexity of distributionally robust linear Markov decision processes (MDPs) with an uncertainty set characterized by the total variation distance using offline data.
We develop a pessimistic model-based algorithm and establish its sample complexity bound under minimal data coverage assumptions.
arXiv Detail & Related papers (2024-03-19T17:48:42Z) - Robust Control for Dynamical Systems With Non-Gaussian Noise via Formal
Abstractions [59.605246463200736]
We present a novel controller synthesis method that does not rely on any explicit representation of the noise distributions.
First, we abstract the continuous control system into a finite-state model that captures noise by probabilistic transitions between discrete states.
We use state-of-the-art verification techniques to provide guarantees on the interval Markov decision process and compute a controller for which these guarantees carry over to the original control system.
arXiv Detail & Related papers (2023-01-04T10:40:30Z) - Formal Controller Synthesis for Markov Jump Linear Systems with
Uncertain Dynamics [64.72260320446158]
We propose a method for synthesising controllers for Markov jump linear systems.
Our method is based on a finite-state abstraction that captures both the discrete (mode-jumping) and continuous (stochastic linear) behaviour of the MJLS.
We apply our method to multiple realistic benchmark problems, in particular, a temperature control and an aerial vehicle delivery problem.
arXiv Detail & Related papers (2022-12-01T17:36:30Z) - The Role of Coverage in Online Reinforcement Learning [72.01066664756986]
We show that the mere existence of a data distribution with good coverage can enable sample-efficient online RL.
Existing complexity measures for online RL, including Bellman rank and Bellman-Eluder dimension, fail to optimally capture coverability.
We propose a new complexity measure, the sequential extrapolation coefficient, to provide a unification.
arXiv Detail & Related papers (2022-10-09T03:50:05Z) - Distributionally Robust Model-Based Offline Reinforcement Learning with
Near-Optimal Sample Complexity [39.886149789339335]
offline reinforcement learning aims to learn to perform decision making from history data without active exploration.
Due to uncertainties and variabilities of the environment, it is critical to learn a robust policy that performs well even when the deployed environment deviates from the nominal one used to collect the history dataset.
We consider a distributionally robust formulation of offline RL, focusing on robust Markov decision processes with an uncertainty set specified by the Kullback-Leibler divergence in both finite-horizon and infinite-horizon settings.
arXiv Detail & Related papers (2022-08-11T11:55:31Z) - On Continual Model Refinement in Out-of-Distribution Data Streams [64.62569873799096]
Real-world natural language processing (NLP) models need to be continually updated to fix the prediction errors in out-of-distribution (OOD) data streams.
Existing continual learning (CL) problem setups cannot cover such a realistic and complex scenario.
We propose a new CL problem formulation dubbed continual model refinement (CMR)
arXiv Detail & Related papers (2022-05-04T11:54:44Z) - Adaptive Stochastic MPC under Unknown Noise Distribution [19.03553854357296]
We address the MPC problem for linear systems, subject to chance state constraints and hard input constraints, under unknown noise distribution.
We design a distributionally robust and robustly stable benchmark SMPC algorithm for the ideal setting of known noise statistics.
We employ this benchmark controller to derive a novel adaptive SMPC scheme that learns the necessary noise statistics online.
arXiv Detail & Related papers (2022-04-03T16:35:18Z) - Online Optimization and Ambiguity-based Learning of Distributionally Uncertain Dynamic Systems [1.6709415233613623]
This paper proposes a novel approach to construct data-driven online solutions to optimization problems (P) subject to a class of distributionally uncertain dynamical systems.
The introduced framework allows for the simultaneous learning of distributional system uncertainty via a parameterized, control-dependent ambiguity set.
We also introduce an online version of Nesterov's accelerated-gradient algorithm, and analyze its performance to solve this class of problems via dissipativity theory.
arXiv Detail & Related papers (2021-02-18T01:49:06Z) - Stein Variational Model Predictive Control [130.60527864489168]
Decision making under uncertainty is critical to real-world, autonomous systems.
Model Predictive Control (MPC) methods have demonstrated favorable performance in practice, but remain limited when dealing with complex distributions.
We show that this framework leads to successful planning in challenging, non optimal control problems.
arXiv Detail & Related papers (2020-11-15T22:36:59Z) - Identification of Probability weighted ARX models with arbitrary domains [75.91002178647165]
PieceWise Affine models guarantees universal approximation, local linearity and equivalence to other classes of hybrid system.
In this work, we focus on the identification of PieceWise Auto Regressive with eXogenous input models with arbitrary regions (NPWARX)
The architecture is conceived following the Mixture of Expert concept, developed within the machine learning field.
arXiv Detail & Related papers (2020-09-29T12:50:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.