Online Optimization and Ambiguity-based Learning of Distributionally Uncertain Dynamic Systems
- URL: http://arxiv.org/abs/2102.09111v2
- Date: Sun, 21 Jul 2024 18:11:23 GMT
- Title: Online Optimization and Ambiguity-based Learning of Distributionally Uncertain Dynamic Systems
- Authors: Dan Li, Dariush Fooladivanda, Sonia Martinez,
- Abstract summary: This paper proposes a novel approach to construct data-driven online solutions to optimization problems (P) subject to a class of distributionally uncertain dynamical systems.
The introduced framework allows for the simultaneous learning of distributional system uncertainty via a parameterized, control-dependent ambiguity set.
We also introduce an online version of Nesterov's accelerated-gradient algorithm, and analyze its performance to solve this class of problems via dissipativity theory.
- Score: 1.6709415233613623
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper proposes a novel approach to construct data-driven online solutions to optimization problems (P) subject to a class of distributionally uncertain dynamical systems. The introduced framework allows for the simultaneous learning of distributional system uncertainty via a parameterized, control-dependent ambiguity set using a finite historical data set, and its use to make online decisions with probabilistic regret function bounds. Leveraging the merits of Machine Learning, the main technical approach relies on the theory of Distributional Robust Optimization (DRO), to hedge against uncertainty and provide less conservative results than standard Robust Optimization approaches. Starting from recent results that describe ambiguity sets via parameterized, and control-dependent empirical distributions as well as ambiguity radii, we first present a tractable reformulation of the corresponding optimization problem while maintaining the probabilistic guarantees. We then specialize these problems to the cases of 1) optimal one-stage control of distributionally uncertain nonlinear systems, and 2) resource allocation under distributional uncertainty. A novelty of this work is that it extends DRO to online optimization problems subject to a distributionally uncertain dynamical system constraint, handled via a control-dependent ambiguity set that leads to online-tractable optimization with probabilistic guarantees on regret bounds. Further, we introduce an online version of Nesterov's accelerated-gradient algorithm, and analyze its performance to solve this class of problems via dissipativity theory.
Related papers
- A Deep Generative Learning Approach for Two-stage Adaptive Robust Optimization [3.124884279860061]
We introduce AGRO, a solution algorithm that performs adversarial generation for two-stage adaptive robust optimization.
AGRO generates high-dimensional contingencies that are simultaneously adversarial and realistic.
We show that AGRO outperforms the standard column-and-constraint algorithm by up to 1.8% in production-distribution planning and up to 11.6% in power system expansion.
arXiv Detail & Related papers (2024-09-05T17:42:19Z) - Two-Stage ML-Guided Decision Rules for Sequential Decision Making under Uncertainty [55.06411438416805]
Sequential Decision Making under Uncertainty (SDMU) is ubiquitous in many domains such as energy, finance, and supply chains.
Some SDMU are naturally modeled as Multistage Problems (MSPs) but the resulting optimizations are notoriously challenging from a computational standpoint.
This paper introduces a novel approach Two-Stage General Decision Rules (TS-GDR) to generalize the policy space beyond linear functions.
The effectiveness of TS-GDR is demonstrated through an instantiation using Deep Recurrent Neural Networks named Two-Stage Deep Decision Rules (TS-LDR)
arXiv Detail & Related papers (2024-05-23T18:19:47Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
The Predict-Then-Forecast (PtO) paradigm in machine learning aims to maximize downstream decision quality.
This paper extends the PtO methodology to optimization problems with nondifferentiable Ordered Weighted Averaging (OWA) objectives.
It shows how optimization of OWA functions can be effectively integrated with parametric prediction for fair and robust optimization under uncertainty.
arXiv Detail & Related papers (2024-02-12T16:33:35Z) - Federated Distributionally Robust Optimization with Non-Convex
Objectives: Algorithm and Analysis [24.64654924173679]
Asynchronous distributed algorithm named Asynchronous Single-looP alternatIve gRadient projEction is proposed.
New uncertainty set, i.e., constrained D-norm uncertainty set, is developed to leverage the prior distribution and flexibly control the degree of robustness.
empirical studies on real-world datasets demonstrate that the proposed method can not only achieve fast convergence, but also remain robust against data as well as malicious attacks.
arXiv Detail & Related papers (2023-07-25T01:56:57Z) - Non-Gaussian Uncertainty Minimization Based Control of Stochastic
Nonlinear Robotic Systems [9.088960941718]
We design a state feedback controller that minimizes deviations of the states of the system from the nominal state trajectories due to uncertainties and disturbances.
We use moments and characteristic functions to propagate uncertainties throughout the nonlinear motion model of robotic systems.
arXiv Detail & Related papers (2023-03-02T23:31:32Z) - Online Learning under Budget and ROI Constraints via Weak Adaptivity [57.097119428915796]
Existing primal-dual algorithms for constrained online learning problems rely on two fundamental assumptions.
We show how such assumptions can be circumvented by endowing standard primal-dual templates with weakly adaptive regret minimizers.
We prove the first best-of-both-worlds no-regret guarantees which hold in absence of the two aforementioned assumptions.
arXiv Detail & Related papers (2023-02-02T16:30:33Z) - Distributed Distributionally Robust Optimization with Non-Convex
Objectives [24.64654924173679]
Asynchronous distributed algorithm named Asynchronous Single-looP alternatIve gRadient projEction is proposed.
New uncertainty set, i.e., constrained D-norm uncertainty set, is developed to leverage the prior distribution and flexibly control the degree of robustness.
empirical studies on real-world datasets demonstrate that the proposed method can not only achieve fast convergence, but also remain robust against data as well as malicious attacks.
arXiv Detail & Related papers (2022-10-14T07:39:13Z) - Distributed Online Non-convex Optimization with Composite Regret [31.53784277195043]
We propose a novel composite regret with a new network regret for distributed online general bounds losses.
To our knowledge, is the first regret bound for distributed online nonlinear learning.
arXiv Detail & Related papers (2022-09-21T04:16:33Z) - Probabilistic robust linear quadratic regulators with Gaussian processes [73.0364959221845]
Probabilistic models such as Gaussian processes (GPs) are powerful tools to learn unknown dynamical systems from data for subsequent use in control design.
We present a novel controller synthesis for linearized GP dynamics that yields robust controllers with respect to a probabilistic stability margin.
arXiv Detail & Related papers (2021-05-17T08:36:18Z) - Modeling the Second Player in Distributionally Robust Optimization [90.25995710696425]
We argue for the use of neural generative models to characterize the worst-case distribution.
This approach poses a number of implementation and optimization challenges.
We find that the proposed approach yields models that are more robust than comparable baselines.
arXiv Detail & Related papers (2021-03-18T14:26:26Z) - Resource Allocation via Model-Free Deep Learning in Free Space Optical
Communications [119.81868223344173]
The paper investigates the general problem of resource allocation for mitigating channel fading effects in Free Space Optical (FSO) communications.
Under this framework, we propose two algorithms that solve FSO resource allocation problems.
arXiv Detail & Related papers (2020-07-27T17:38:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.