論文の概要: Rethinking recidivism through a causal lens
- arxiv url: http://arxiv.org/abs/2011.11483v4
- Date: Wed, 8 May 2024 13:48:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-09 19:53:59.375457
- Title: Rethinking recidivism through a causal lens
- Title(参考訳): 因果レンズによる再帰主義の再考
- Authors: Vik Shirvaikar, Choudur Lakshminarayan,
- Abstract要約: ノースカロライナの有名なデータセットを用いて、投獄(プライソンタイム)が再犯に与える影響を考察する。
我々は、投獄が再犯に有害な影響があること、すなわち、長期の懲役刑により、解放後に個人が再犯する可能性がより高くなることを発見した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Predictive modeling of criminal recidivism, or whether people will re-offend in the future, has a long and contentious history. Modern causal inference methods allow us to move beyond prediction and target the "treatment effect" of a specific intervention on an outcome in an observational dataset. In this paper, we look specifically at the effect of incarceration (prison time) on recidivism, using a well-known dataset from North Carolina. Two popular causal methods for addressing confounding bias are explained and demonstrated: directed acyclic graph (DAG) adjustment and double machine learning (DML), including a sensitivity analysis for unobserved confounders. We find that incarceration has a detrimental effect on recidivism, i.e., longer prison sentences make it more likely that individuals will re-offend after release, although this conclusion should not be generalized beyond the scope of our data. We hope that this case study can inform future applications of causal inference to criminal justice analysis.
- Abstract(参考訳): 犯罪再犯の予測モデリング、あるいは人々が将来再犯するかどうかは、長く論争の多い歴史を持っている。
現代の因果推論手法は、予測を超えて、観察データセットにおける結果に対する特定の介入の「処理効果」を目標にすることができる。
本稿では,ノースカロライナの有名なデータセットを用いて,投獄(プライソンタイム)が再犯に与える影響を特に考察する。
共起バイアスに対処する2つの一般的な因果的手法が説明され、実証された: 有向非巡回グラフ(DAG)調整と二重機械学習(DML)。
我々は、収監が再犯に有害な影響があること、すなわち、長期の懲役刑により、解放後に個人が再犯する可能性が高まることを発見したが、この結論は、我々のデータの範囲を超えて一般化されるべきではない。
このケーススタディは、刑事司法分析への因果推論の今後の応用を知らせてくれることを願っている。
関連論文リスト
- The Progression of Disparities within the Criminal Justice System:
Differential Enforcement and Risk Assessment Instruments [26.018802058292614]
アルゴリズム的リスク評価手段(RAI)は、刑事司法における意思決定をますます通知する。
問題となるのは、逮捕が全体的違反を反映する程度は、その人の性格によって異なる可能性があることである。
犯罪と逮捕率の切り離しがRAIとその評価に与える影響について検討する。
論文 参考訳(メタデータ) (2023-05-12T16:06:40Z) - Spatial-Temporal Hypergraph Self-Supervised Learning for Crime
Prediction [60.508960752148454]
本研究では,犯罪予測におけるラベル不足問題に対処する空間的ハイパーグラフ自己監視学習フレームワークを提案する。
都市空間全体における犯罪の地域的依存性をエンコードするクロスリージョンハイパーグラフ構造学習を提案する。
また,2段階の自己指導型学習パラダイムを設計し,局所的・世界的空間的犯罪パターンを共同で捉えるだけでなく,地域的自己差別の強化による疎犯罪表現を補う。
論文 参考訳(メタデータ) (2022-04-18T23:46:01Z) - Analyzing a Carceral Algorithm used by the Pennsylvania Department of
Corrections [0.0]
本論文は、投獄中の囚人の収容レベルを分類するために使用されるペンシルベニア付加分類ツール(PACT)に焦点を当てる。
この場合のアルゴリズムは、追加の懲戒行為に耐え、必要なプログラミングを完了し、特に仮釈放アルゴリズムに入力される変数に蒸留される経験を得る可能性を決定する。
論文 参考訳(メタデータ) (2021-12-06T18:47:31Z) - Deep Interpretable Criminal Charge Prediction and Algorithmic Bias [2.3347476425292717]
本稿では, ポストホックな説明のバイアス問題に対処し, 将来の刑事告発を受けるかどうかの信頼性の高い予測を行う。
提案手法は,実生活データセット上での予測精度とリコールの一貫性と信頼性を示す。
論文 参考訳(メタデータ) (2021-06-25T07:00:13Z) - Efficient Causal Inference from Combined Observational and
Interventional Data through Causal Reductions [68.6505592770171]
因果効果を推定する際の主な課題の1つである。
そこで本研究では,任意の数の高次元潜入共創者を置き換える新たな因果還元法を提案する。
パラメータ化縮小モデルを観測データと介入データから共同で推定する学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-08T14:29:07Z) - The effect of differential victim crime reporting on predictive policing
systems [84.86615754515252]
本研究では, 被害者の犯罪報告率の違いが, 共通犯罪ホットスポット予測モデルにおいて, 結果の相違をもたらすことを示す。
以上の結果から, 犯罪報告率の差は, 高犯罪から低犯罪へ, 高犯罪・中犯罪・高報道へ, 予測ホットスポットの移動につながる可能性が示唆された。
論文 参考訳(メタデータ) (2021-01-30T01:57:22Z) - Long-Tailed Classification by Keeping the Good and Removing the Bad
Momentum Causal Effect [95.37587481952487]
長い尾の分類は、大規模なディープラーニングの鍵である。
既存の手法は主に、基本的な理論を欠いた再重み付け/再サンプリングに基づいている。
本稿では,従来の手法の理由を解明するだけでなく,新たな原理的解を導出する因果推論の枠組みを確立する。
論文 参考訳(メタデータ) (2020-09-28T00:32:11Z) - Enabling Counterfactual Survival Analysis with Balanced Representations [64.17342727357618]
生存データは様々な医学的応用、すなわち薬物開発、リスクプロファイリング、臨床試験で頻繁に見られる。
本稿では,生存結果に適用可能な対実的推論のための理論的基盤を持つ統一的枠組みを提案する。
論文 参考訳(メタデータ) (2020-06-14T01:15:00Z) - Compounding Injustice: History and Prediction in Carceral
Decision-Making [0.0]
この論文は、犯罪政策におけるアルゴリズムによる意思決定がフィードバック効果を示す方法について考察する。
我々は、現行の「犯罪リスク」決定要因の制御さえも、投獄の犯罪的効果の証拠を見つける。
本稿では, コンプレッション効果の理論的意義について検討する。
論文 参考訳(メタデータ) (2020-05-18T14:51:50Z) - Crime Prediction Using Spatio-Temporal Data [8.50468505606714]
監視学習技術は、より正確な犯罪を予測するために使用される。
提案システムには、サンフランシスコ市で12年間にわたって行われた犯罪活動データセットが組み込まれている。
論文 参考訳(メタデータ) (2020-03-11T16:19:19Z) - Exploring Spatio-Temporal and Cross-Type Correlations for Crime
Prediction [48.1813701535167]
我々は,都市犯罪のクロスタイプと時間的相関を利用した犯罪予測を行う。
犯罪予測のための相関関係を数学的にモデル化するコヒーレントな枠組みを提案する。
犯罪予測における相関関係の重要性を理解するために、さらなる実験が行われた。
論文 参考訳(メタデータ) (2020-01-20T00:34:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。