Consolidation via Policy Information Regularization in Deep RL for
Multi-Agent Games
- URL: http://arxiv.org/abs/2011.11517v1
- Date: Mon, 23 Nov 2020 16:28:27 GMT
- Title: Consolidation via Policy Information Regularization in Deep RL for
Multi-Agent Games
- Authors: Tyler Malloy, Tim Klinger, Miao Liu, Matthew Riemer, Gerald Tesauro,
Chris R. Sims
- Abstract summary: This paper introduces an information-theoretic constraint on learned policy complexity in the Multi-Agent Deep Deterministic Policy Gradient (MADDPG) reinforcement learning algorithm.
Results from experimentation in multi-agent cooperative and competitive tasks demonstrate that the capacity-limited approach is a good candidate for improving learning performance in these environments.
- Score: 21.46148507577606
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces an information-theoretic constraint on learned policy
complexity in the Multi-Agent Deep Deterministic Policy Gradient (MADDPG)
reinforcement learning algorithm. Previous research with a related approach in
continuous control experiments suggests that this method favors learning
policies that are more robust to changing environment dynamics. The multi-agent
game setting naturally requires this type of robustness, as other agents'
policies change throughout learning, introducing a nonstationary environment.
For this reason, recent methods in continual learning are compared to our
approach, termed Capacity-Limited MADDPG. Results from experimentation in
multi-agent cooperative and competitive tasks demonstrate that the
capacity-limited approach is a good candidate for improving learning
performance in these environments.
Related papers
- Learning Multimodal Behaviors from Scratch with Diffusion Policy Gradient [26.675822002049372]
Deep Diffusion Policy Gradient (DDiffPG) is a novel actor-critic algorithm that learns from scratch multimodal policies.
DDiffPG forms a multimodal training batch and utilizes mode-specific Q-learning to mitigate the inherent greediness of the RL objective.
Our approach further allows the policy to be conditioned on mode-specific embeddings to explicitly control the learned modes.
arXiv Detail & Related papers (2024-06-02T09:32:28Z) - Learning Optimal Deterministic Policies with Stochastic Policy Gradients [62.81324245896716]
Policy gradient (PG) methods are successful approaches to deal with continuous reinforcement learning (RL) problems.
In common practice, convergence (hyper)policies are learned only to deploy their deterministic version.
We show how to tune the exploration level used for learning to optimize the trade-off between the sample complexity and the performance of the deployed deterministic policy.
arXiv Detail & Related papers (2024-05-03T16:45:15Z) - Projected Off-Policy Q-Learning (POP-QL) for Stabilizing Offline
Reinforcement Learning [57.83919813698673]
Projected Off-Policy Q-Learning (POP-QL) is a novel actor-critic algorithm that simultaneously reweights off-policy samples and constrains the policy to prevent divergence and reduce value-approximation error.
In our experiments, POP-QL not only shows competitive performance on standard benchmarks, but also out-performs competing methods in tasks where the data-collection policy is significantly sub-optimal.
arXiv Detail & Related papers (2023-11-25T00:30:58Z) - Reparameterized Policy Learning for Multimodal Trajectory Optimization [61.13228961771765]
We investigate the challenge of parametrizing policies for reinforcement learning in high-dimensional continuous action spaces.
We propose a principled framework that models the continuous RL policy as a generative model of optimal trajectories.
We present a practical model-based RL method, which leverages the multimodal policy parameterization and learned world model.
arXiv Detail & Related papers (2023-07-20T09:05:46Z) - Mitigating Off-Policy Bias in Actor-Critic Methods with One-Step
Q-learning: A Novel Correction Approach [0.0]
We introduce a novel policy similarity measure to mitigate the effects of such discrepancy in continuous control.
Our method offers an adequate single-step off-policy correction that is applicable to deterministic policy networks.
arXiv Detail & Related papers (2022-08-01T11:33:12Z) - Semi-On-Policy Training for Sample Efficient Multi-Agent Policy
Gradients [51.749831824106046]
We introduce semi-on-policy (SOP) training as an effective and computationally efficient way to address the sample inefficiency of on-policy policy gradient methods.
We show that our methods perform as well or better than state-of-the-art value-based methods on a variety of SMAC tasks.
arXiv Detail & Related papers (2021-04-27T19:37:01Z) - Probabilistic Mixture-of-Experts for Efficient Deep Reinforcement
Learning [7.020079427649125]
We show that grasping distinguishable skills for some tasks with non-unique optima can be essential for further improving its learning efficiency and performance.
We propose a probabilistic mixture-of-experts (PMOE) for multimodal policy, together with a novel gradient estimator for the indifferentiability problem.
arXiv Detail & Related papers (2021-04-19T08:21:56Z) - Policy Information Capacity: Information-Theoretic Measure for Task
Complexity in Deep Reinforcement Learning [83.66080019570461]
We propose two environment-agnostic, algorithm-agnostic quantitative metrics for task difficulty.
We show that these metrics have higher correlations with normalized task solvability scores than a variety of alternatives.
These metrics can also be used for fast and compute-efficient optimizations of key design parameters.
arXiv Detail & Related papers (2021-03-23T17:49:50Z) - A Policy Gradient Algorithm for Learning to Learn in Multiagent
Reinforcement Learning [47.154539984501895]
We propose a novel meta-multiagent policy gradient theorem that accounts for the non-stationary policy dynamics inherent to multiagent learning settings.
This is achieved by modeling our gradient updates to consider both an agent's own non-stationary policy dynamics and the non-stationary policy dynamics of other agents in the environment.
arXiv Detail & Related papers (2020-10-31T22:50:21Z) - Deep RL With Information Constrained Policies: Generalization in
Continuous Control [21.46148507577606]
We show that a natural constraint on information flow might confer onto artificial agents in continuous control tasks.
We implement a novel Capacity-Limited Actor-Critic (CLAC) algorithm.
Our experiments show that compared to alternative approaches, CLAC offers improvements in generalization between training and modified test environments.
arXiv Detail & Related papers (2020-10-09T15:42:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.