Planar 3D Transfer Learning for End to End Unimodal MRI Unbalanced Data
Segmentation
- URL: http://arxiv.org/abs/2011.11557v1
- Date: Mon, 23 Nov 2020 17:11:50 GMT
- Title: Planar 3D Transfer Learning for End to End Unimodal MRI Unbalanced Data
Segmentation
- Authors: Martin Kolarik, Radim Burget, Carlos M. Travieso-Gonzalez, Jan Kocica
- Abstract summary: We present a novel approach of 2D to 3D transfer learning based on mapping pre-trained 2D convolutional neural network weights into planar 3D kernels.
The method is validated by the proposed planar 3D res-u-net network with encoder transferred from the 2D VGG-16.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a novel approach of 2D to 3D transfer learning based on mapping
pre-trained 2D convolutional neural network weights into planar 3D kernels. The
method is validated by the proposed planar 3D res-u-net network with encoder
transferred from the 2D VGG-16, which is applied for a single-stage unbalanced
3D image data segmentation. In particular, we evaluate the method on the MICCAI
2016 MS lesion segmentation challenge dataset utilizing solely fluid-attenuated
inversion recovery (FLAIR) sequence without brain extraction for training and
inference to simulate real medical praxis. The planar 3D res-u-net network
performed the best both in sensitivity and Dice score amongst end to end
methods processing raw MRI scans and achieved comparable Dice score to a
state-of-the-art unimodal not end to end approach. Complete source code was
released under the open-source license, and this paper complies with the
Machine learning reproducibility checklist. By implementing practical transfer
learning for 3D data representation, we could segment heavily unbalanced data
without selective sampling and achieved more reliable results using less
training data in a single modality. From a medical perspective, the unimodal
approach gives an advantage in real praxis as it does not require
co-registration nor additional scanning time during an examination. Although
modern medical imaging methods capture high-resolution 3D anatomy scans
suitable for computer-aided detection system processing, deployment of
automatic systems for interpretation of radiology imaging is still rather
theoretical in many medical areas. Our work aims to bridge the gap by offering
a solution for partial research questions.
Related papers
- Cross-D Conv: Cross-Dimensional Transferable Knowledge Base via Fourier Shifting Operation [3.69758875412828]
Cross-D Conv operation bridges the dimensional gap by learning the phase shifting in the Fourier domain.
Our method enables seamless weight transfer between 2D and 3D convolution operations, effectively facilitating cross-dimensional learning.
arXiv Detail & Related papers (2024-11-02T13:03:44Z) - Generative Enhancement for 3D Medical Images [74.17066529847546]
We propose GEM-3D, a novel generative approach to the synthesis of 3D medical images.
Our method begins with a 2D slice, noted as the informed slice to serve the patient prior, and propagates the generation process using a 3D segmentation mask.
By decomposing the 3D medical images into masks and patient prior information, GEM-3D offers a flexible yet effective solution for generating versatile 3D images.
arXiv Detail & Related papers (2024-03-19T15:57:04Z) - Enhancing Weakly Supervised 3D Medical Image Segmentation through
Probabilistic-aware Learning [52.249748801637196]
3D medical image segmentation is a challenging task with crucial implications for disease diagnosis and treatment planning.
Recent advances in deep learning have significantly enhanced fully supervised medical image segmentation.
We propose a novel probabilistic-aware weakly supervised learning pipeline, specifically designed for 3D medical imaging.
arXiv Detail & Related papers (2024-03-05T00:46:53Z) - Slice-level Detection of Intracranial Hemorrhage on CT Using Deep
Descriptors of Adjacent Slices [0.31317409221921133]
We propose a new strategy to train emphslice-level classifiers on CT scans based on the descriptors of the adjacent slices along the axis.
We obtain a single model in the top 4% best-performing solutions of the RSNA Intracranial Hemorrhage dataset challenge.
The proposed method is general and can be applied to other 3D medical diagnosis tasks such as MRI imaging.
arXiv Detail & Related papers (2022-08-05T23:20:37Z) - Super Images -- A New 2D Perspective on 3D Medical Imaging Analysis [0.0]
We present a simple yet effective 2D method to handle 3D data while efficiently embedding the 3D knowledge during training.
Our method generates a super-resolution image by stitching slices side by side in the 3D image.
While attaining equal, if not superior, results to 3D networks utilizing only 2D counterparts, the model complexity is reduced by around threefold.
arXiv Detail & Related papers (2022-05-05T09:59:03Z) - Self Context and Shape Prior for Sensorless Freehand 3D Ultrasound
Reconstruction [61.62191904755521]
3D freehand US reconstruction is promising in addressing the problem by providing broad range and freeform scan.
Existing deep learning based methods only focus on the basic cases of skill sequences.
We propose a novel approach to sensorless freehand 3D US reconstruction considering the complex skill sequences.
arXiv Detail & Related papers (2021-07-31T16:06:50Z) - Medical Transformer: Universal Brain Encoder for 3D MRI Analysis [1.6287500717172143]
Existing 3D-based methods have transferred the pre-trained models to downstream tasks.
They demand a massive amount of parameters to train the model for 3D medical imaging.
We propose a novel transfer learning framework, called Medical Transformer, that effectively models 3D volumetric images in the form of a sequence of 2D image slices.
arXiv Detail & Related papers (2021-04-28T08:34:21Z) - TSGCNet: Discriminative Geometric Feature Learning with Two-Stream
GraphConvolutional Network for 3D Dental Model Segmentation [141.2690520327948]
We propose a two-stream graph convolutional network (TSGCNet) to learn multi-view information from different geometric attributes.
We evaluate our proposed TSGCNet on a real-patient dataset of dental models acquired by 3D intraoral scanners.
arXiv Detail & Related papers (2020-12-26T08:02:56Z) - Revisiting 3D Context Modeling with Supervised Pre-training for
Universal Lesion Detection in CT Slices [48.85784310158493]
We propose a Modified Pseudo-3D Feature Pyramid Network (MP3D FPN) to efficiently extract 3D context enhanced 2D features for universal lesion detection in CT slices.
With the novel pre-training method, the proposed MP3D FPN achieves state-of-the-art detection performance on the DeepLesion dataset.
The proposed 3D pre-trained weights can potentially be used to boost the performance of other 3D medical image analysis tasks.
arXiv Detail & Related papers (2020-12-16T07:11:16Z) - Modelling the Distribution of 3D Brain MRI using a 2D Slice VAE [66.63629641650572]
We propose a method to model 3D MR brain volumes distribution by combining a 2D slice VAE with a Gaussian model that captures the relationships between slices.
We also introduce a novel evaluation method for generated volumes that quantifies how well their segmentations match those of true brain anatomy.
arXiv Detail & Related papers (2020-07-09T13:23:15Z) - 3D Self-Supervised Methods for Medical Imaging [7.65168530693281]
We propose 3D versions for five different self-supervised methods, in the form of proxy tasks.
Our methods facilitate neural network feature learning from unlabeled 3D images, aiming to reduce the required cost for expert annotation.
The developed algorithms are 3D Contrastive Predictive Coding, 3D Rotation prediction, 3D Jigsaw puzzles, Relative 3D patch location, and 3D Exemplar networks.
arXiv Detail & Related papers (2020-06-06T09:56:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.