Beta-CoRM: A Bayesian Approach for $n$-gram Profiles Analysis
- URL: http://arxiv.org/abs/2011.11558v3
- Date: Mon, 2 Sep 2024 02:24:21 GMT
- Title: Beta-CoRM: A Bayesian Approach for $n$-gram Profiles Analysis
- Authors: José A. Perusquía, Jim E. Griffin, Cristiano Villa,
- Abstract summary: The flexibility of the proposed modelling allows to consider a straightforward approach to feature selection in the generative model.
A slice sampling algorithm is derived for a fast inferential procedure, which is applied to synthetic and real data scenarios.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: $n$-gram profiles have been successfully and widely used to analyse long sequences of potentially differing lengths for clustering or classification. Mainly, machine learning algorithms have been used for this purpose but, despite their predictive performance, these methods cannot discover hidden structures or provide a full probabilistic representation of the data. A novel class of Bayesian generative models designed for $n$-gram profiles used as binary attributes have been designed to address this. The flexibility of the proposed modelling allows to consider a straightforward approach to feature selection in the generative model. Furthermore, a slice sampling algorithm is derived for a fast inferential procedure, which is applied to synthetic and real data scenarios and shows that feature selection can improve classification accuracy.
Related papers
- Exploring Beyond Logits: Hierarchical Dynamic Labeling Based on Embeddings for Semi-Supervised Classification [49.09505771145326]
We propose a Hierarchical Dynamic Labeling (HDL) algorithm that does not depend on model predictions and utilizes image embeddings to generate sample labels.
Our approach has the potential to change the paradigm of pseudo-label generation in semi-supervised learning.
arXiv Detail & Related papers (2024-04-26T06:00:27Z) - Automated Algorithm Selection: from Feature-Based to Feature-Free
Approaches [0.5801044612920815]
We propose a novel technique for algorithm-selection, applicable to optimisation in which there is implicit sequential information encapsulated in the data.
We train two types of recurrent neural networks to predict a packing in online bin-packing, selecting from four well-known domains.
arXiv Detail & Related papers (2022-03-24T23:59:50Z) - Sampling from Arbitrary Functions via PSD Models [55.41644538483948]
We take a two-step approach by first modeling the probability distribution and then sampling from that model.
We show that these models can approximate a large class of densities concisely using few evaluations, and present a simple algorithm to effectively sample from these models.
arXiv Detail & Related papers (2021-10-20T12:25:22Z) - Low-rank Dictionary Learning for Unsupervised Feature Selection [11.634317251468968]
We introduce a novel unsupervised feature selection approach by applying dictionary learning ideas in a low-rank representation.
A unified objective function for unsupervised feature selection is proposed in a sparse way by an $ell_2,1$-norm regularization.
Our experimental findings reveal that the proposed method outperforms the state-of-the-art algorithm.
arXiv Detail & Related papers (2021-06-21T13:39:10Z) - Dynamic Instance-Wise Classification in Correlated Feature Spaces [15.351282873821935]
In a typical machine learning setting, the predictions on all test instances are based on a common subset of features discovered during model training.
A new method is proposed that sequentially selects the best feature to evaluate for each test instance individually, and stops the selection process to make a prediction once it determines that no further improvement can be achieved with respect to classification accuracy.
The effectiveness, generalizability, and scalability of the proposed method is illustrated on a variety of real-world datasets from diverse application domains.
arXiv Detail & Related papers (2021-06-08T20:20:36Z) - Distilling Interpretable Models into Human-Readable Code [71.11328360614479]
Human-readability is an important and desirable standard for machine-learned model interpretability.
We propose to train interpretable models using conventional methods, and then distill them into concise, human-readable code.
We describe a piecewise-linear curve-fitting algorithm that produces high-quality results efficiently and reliably across a broad range of use cases.
arXiv Detail & Related papers (2021-01-21T01:46:36Z) - Online Active Model Selection for Pre-trained Classifiers [72.84853880948894]
We design an online selective sampling approach that actively selects informative examples to label and outputs the best model with high probability at any round.
Our algorithm can be used for online prediction tasks for both adversarial and streams.
arXiv Detail & Related papers (2020-10-19T19:53:15Z) - Goal-directed Generation of Discrete Structures with Conditional
Generative Models [85.51463588099556]
We introduce a novel approach to directly optimize a reinforcement learning objective, maximizing an expected reward.
We test our methodology on two tasks: generating molecules with user-defined properties and identifying short python expressions which evaluate to a given target value.
arXiv Detail & Related papers (2020-10-05T20:03:13Z) - IVFS: Simple and Efficient Feature Selection for High Dimensional
Topology Preservation [33.424663018395684]
We propose a simple and effective feature selection algorithm to enhance sample similarity preservation.
The proposed algorithm is able to well preserve the pairwise distances, as well as topological patterns, of the full data.
arXiv Detail & Related papers (2020-04-02T23:05:00Z) - Discrete-Valued Latent Preference Matrix Estimation with Graph Side
Information [12.836994708337144]
We develop an algorithm that matches the optimal sample complexity.
Our algorithm is robust to model errors and outperforms the existing algorithms in terms of prediction performance.
arXiv Detail & Related papers (2020-03-16T06:29:24Z) - Learning Gaussian Graphical Models via Multiplicative Weights [54.252053139374205]
We adapt an algorithm of Klivans and Meka based on the method of multiplicative weight updates.
The algorithm enjoys a sample complexity bound that is qualitatively similar to others in the literature.
It has a low runtime $O(mp2)$ in the case of $m$ samples and $p$ nodes, and can trivially be implemented in an online manner.
arXiv Detail & Related papers (2020-02-20T10:50:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.