Dynamic Instance-Wise Classification in Correlated Feature Spaces
- URL: http://arxiv.org/abs/2106.04668v1
- Date: Tue, 8 Jun 2021 20:20:36 GMT
- Title: Dynamic Instance-Wise Classification in Correlated Feature Spaces
- Authors: Yasitha Warahena Liyanage, Daphney-Stavroula Zois, Charalampos Chelmis
- Abstract summary: In a typical machine learning setting, the predictions on all test instances are based on a common subset of features discovered during model training.
A new method is proposed that sequentially selects the best feature to evaluate for each test instance individually, and stops the selection process to make a prediction once it determines that no further improvement can be achieved with respect to classification accuracy.
The effectiveness, generalizability, and scalability of the proposed method is illustrated on a variety of real-world datasets from diverse application domains.
- Score: 15.351282873821935
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In a typical supervised machine learning setting, the predictions on all test
instances are based on a common subset of features discovered during model
training. However, using a different subset of features that is most
informative for each test instance individually may not only improve prediction
accuracy, but also the overall interpretability of the model. At the same time,
feature selection methods for classification have been known to be the most
effective when many features are irrelevant and/or uncorrelated. In fact,
feature selection ignoring correlations between features can lead to poor
classification performance. In this work, a Bayesian network is utilized to
model feature dependencies. Using the dependency network, a new method is
proposed that sequentially selects the best feature to evaluate for each test
instance individually, and stops the selection process to make a prediction
once it determines that no further improvement can be achieved with respect to
classification accuracy. The optimum number of features to acquire and the
optimum classification strategy are derived for each test instance. The
theoretical properties of the optimum solution are analyzed, and a new
algorithm is proposed that takes advantage of these properties to implement a
robust and scalable solution for high dimensional settings. The effectiveness,
generalizability, and scalability of the proposed method is illustrated on a
variety of real-world datasets from diverse application domains.
Related papers
- An incremental preference elicitation-based approach to learning potentially non-monotonic preferences in multi-criteria sorting [53.36437745983783]
We first construct a max-margin optimization-based model to model potentially non-monotonic preferences.
We devise information amount measurement methods and question selection strategies to pinpoint the most informative alternative in each iteration.
Two incremental preference elicitation-based algorithms are developed to learn potentially non-monotonic preferences.
arXiv Detail & Related papers (2024-09-04T14:36:20Z) - Feature Selection as Deep Sequential Generative Learning [50.00973409680637]
We develop a deep variational transformer model over a joint of sequential reconstruction, variational, and performance evaluator losses.
Our model can distill feature selection knowledge and learn a continuous embedding space to map feature selection decision sequences into embedding vectors associated with utility scores.
arXiv Detail & Related papers (2024-03-06T16:31:56Z) - An Additive Instance-Wise Approach to Multi-class Model Interpretation [53.87578024052922]
Interpretable machine learning offers insights into what factors drive a certain prediction of a black-box system.
Existing methods mainly focus on selecting explanatory input features, which follow either locally additive or instance-wise approaches.
This work exploits the strengths of both methods and proposes a global framework for learning local explanations simultaneously for multiple target classes.
arXiv Detail & Related papers (2022-07-07T06:50:27Z) - Parallel feature selection based on the trace ratio criterion [4.30274561163157]
This work presents a novel parallel feature selection approach for classification, namely Parallel Feature Selection using Trace criterion (PFST)
Our method uses trace criterion, a measure of class separability used in Fisher's Discriminant Analysis, to evaluate feature usefulness.
The experiments show that our method can produce a small set of features in a fraction of the amount of time by the other methods under comparison.
arXiv Detail & Related papers (2022-03-03T10:50:33Z) - Compactness Score: A Fast Filter Method for Unsupervised Feature
Selection [66.84571085643928]
We propose a fast unsupervised feature selection method, named as, Compactness Score (CSUFS) to select desired features.
Our proposed algorithm seems to be more accurate and efficient compared with existing algorithms.
arXiv Detail & Related papers (2022-01-31T13:01:37Z) - Selecting the suitable resampling strategy for imbalanced data
classification regarding dataset properties [62.997667081978825]
In many application domains such as medicine, information retrieval, cybersecurity, social media, etc., datasets used for inducing classification models often have an unequal distribution of the instances of each class.
This situation, known as imbalanced data classification, causes low predictive performance for the minority class examples.
Oversampling and undersampling techniques are well-known strategies to deal with this problem by balancing the number of examples of each class.
arXiv Detail & Related papers (2021-12-15T18:56:39Z) - Feature Selection Using Reinforcement Learning [0.0]
The space of variables or features that can be used to characterize a particular predictor of interest continues to grow exponentially.
Identifying the most characterizing features that minimizes the variance without jeopardizing the bias of our models is critical to successfully training a machine learning model.
arXiv Detail & Related papers (2021-01-23T09:24:37Z) - Joint Adaptive Graph and Structured Sparsity Regularization for
Unsupervised Feature Selection [6.41804410246642]
We propose a joint adaptive graph and structured sparsity regularization unsupervised feature selection (JASFS) method.
A subset of optimal features will be selected in group, and the number of selected features will be determined automatically.
Experimental results on eight benchmarks demonstrate the effectiveness and efficiency of the proposed method.
arXiv Detail & Related papers (2020-10-09T08:17:04Z) - On-the-Fly Joint Feature Selection and Classification [16.84451472788859]
We propose a framework to perform joint feature selection and classification on-the-fly.
We derive the optimum solution of the associated optimization problem and analyze its structure.
We evaluate the performance of the proposed algorithms on several public datasets.
arXiv Detail & Related papers (2020-04-21T19:19:39Z) - Selecting Relevant Features from a Multi-domain Representation for
Few-shot Classification [91.67977602992657]
We propose a new strategy based on feature selection, which is both simpler and more effective than previous feature adaptation approaches.
We show that a simple non-parametric classifier built on top of such features produces high accuracy and generalizes to domains never seen during training.
arXiv Detail & Related papers (2020-03-20T15:44:17Z) - Outlier Detection Ensemble with Embedded Feature Selection [42.8338013000469]
We propose an outlier detection ensemble framework with embedded feature selection (ODEFS)
For each random sub-sampling based learning component, ODEFS unifies feature selection and outlier detection into a pairwise ranking formulation.
We adopt the thresholded self-paced learning to simultaneously optimize feature selection and example selection.
arXiv Detail & Related papers (2020-01-15T13:14:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.