Improving epidemic testing and containment strategies using machine
learning
- URL: http://arxiv.org/abs/2011.11717v1
- Date: Mon, 23 Nov 2020 20:46:01 GMT
- Title: Improving epidemic testing and containment strategies using machine
learning
- Authors: Laura Natali, Saga Helgadottir, Onofrio M. Marago, and Giovanni Volpe
- Abstract summary: We show that machine learning can be used to identify which individuals are most beneficial to test.
We simulate an outbreak using the archetypal susceptible-infectious-recovered (SIR) model.
We use data about the first confirmed cases to train a neural network that learns to make predictions about the rest of the population.
- Score: 0.31498833540989407
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Containment of epidemic outbreaks entails great societal and economic costs.
Cost-effective containment strategies rely on efficiently identifying infected
individuals, making the best possible use of the available testing resources.
Therefore, quickly identifying the optimal testing strategy is of critical
importance. Here, we demonstrate that machine learning can be used to identify
which individuals are most beneficial to test, automatically and dynamically
adapting the testing strategy to the characteristics of the disease outbreak.
Specifically, we simulate an outbreak using the archetypal
susceptible-infectious-recovered (SIR) model and we use data about the first
confirmed cases to train a neural network that learns to make predictions about
the rest of the population. Using these prediction, we manage to contain the
outbreak more effectively and more quickly than with standard approaches.
Furthermore, we demonstrate how this method can be used also when there is a
possibility of reinfection (SIRS model) to efficiently eradicate an endemic
disease.
Related papers
- Neural parameter calibration and uncertainty quantification for epidemic
forecasting [0.0]
We apply a novel and powerful computational method to the problem of learning probability densities on contagion parameters.
Using a neural network, we calibrate an ODE model to data of the spread of COVID-19 in Berlin in 2020.
We show convergence of our method to the true posterior on a simplified SIR model of epidemics, and also demonstrate our method's learning capabilities on a reduced dataset.
arXiv Detail & Related papers (2023-12-05T21:34:59Z) - Adaptive Sequential Surveillance with Network and Temporal Dependence [1.7205106391379026]
Strategic test allocation plays a major role in the control of both emerging and existing pandemics.
Infectious disease surveillance presents unique statistical challenges.
We propose an Online Super Learner for adaptive sequential surveillance.
arXiv Detail & Related papers (2022-12-05T17:04:17Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z) - Reinforced Contact Tracing and Epidemic Intervention [8.141401074784406]
We develop an Individual-based Reinforcement Learning Epidemic Control Agent (IDRLECA) to search for smart epidemic control strategies.
IDRLECA can suppress infections at a very low level and retain more than 95% of human mobility.
arXiv Detail & Related papers (2021-02-04T08:31:48Z) - Whom to Test? Active Sampling Strategies for Managing COVID-19 [1.4610038284393163]
This paper presents methods to choose individuals to test for infection during a pandemic such as COVID-19.
The smart-testing ideas presented here are motivated by active learning and multi-armed bandit techniques in machine learning.
arXiv Detail & Related papers (2020-12-25T02:04:50Z) - An Optimal Control Approach to Learning in SIDARTHE Epidemic model [67.22168759751541]
We propose a general approach for learning time-variant parameters of dynamic compartmental models from epidemic data.
We forecast the epidemic evolution in Italy and France.
arXiv Detail & Related papers (2020-10-28T10:58:59Z) - Epidemic mitigation by statistical inference from contact tracing data [61.04165571425021]
We develop Bayesian inference methods to estimate the risk that an individual is infected.
We propose to use probabilistic risk estimation in order to optimize testing and quarantining strategies for the control of an epidemic.
Our approaches translate into fully distributed algorithms that only require communication between individuals who have recently been in contact.
arXiv Detail & Related papers (2020-09-20T12:24:45Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - A Partially Observable MDP Approach for Sequential Testing for
Infectious Diseases such as COVID-19 [29.84897273754802]
We show that the testing problem can be cast as a sequential learning-based resource allocation problem with constraints.
We then develop efficient learning strategies that minimize the number of infected individuals.
arXiv Detail & Related papers (2020-07-25T22:13:37Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
COVID-19 pandemics has challenged emergency response systems worldwide, with widespread reports of essential services breakdown and collapse of health care structure.
This work describes a machine learning model derived from hemogram exam data performed in symptomatic patients.
Proposed models can predict COVID-19 qRT-PCR results in symptomatic individuals with high accuracy, sensitivity and specificity.
arXiv Detail & Related papers (2020-05-10T01:45:03Z) - Self-Training with Improved Regularization for Sample-Efficient Chest
X-Ray Classification [80.00316465793702]
We present a deep learning framework that enables robust modeling in challenging scenarios.
Our results show that using 85% lesser labeled data, we can build predictive models that match the performance of classifiers trained in a large-scale data setting.
arXiv Detail & Related papers (2020-05-03T02:36:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.