The Interpretable Dictionary in Sparse Coding
- URL: http://arxiv.org/abs/2011.11805v1
- Date: Tue, 24 Nov 2020 00:26:40 GMT
- Title: The Interpretable Dictionary in Sparse Coding
- Authors: Edward Kim, Connor Onweller, Andrew O'Brien, Kathleen McCoy
- Abstract summary: In our work, we illustrate that an ANN, trained using sparse coding under specific sparsity constraints, yields a more interpretable model than the standard deep learning model.
The dictionary learned by sparse coding can be more easily understood and the activations of these elements creates a selective feature output.
- Score: 4.205692673448206
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial neural networks (ANNs), specifically deep learning networks, have
often been labeled as black boxes due to the fact that the internal
representation of the data is not easily interpretable. In our work, we
illustrate that an ANN, trained using sparse coding under specific sparsity
constraints, yields a more interpretable model than the standard deep learning
model. The dictionary learned by sparse coding can be more easily understood
and the activations of these elements creates a selective feature output. We
compare and contrast our sparse coding model with an equivalent feed forward
convolutional autoencoder trained on the same data. Our results show both
qualitative and quantitative benefits in the interpretation of the learned
sparse coding dictionary as well as the internal activation representations.
Related papers
- Improving Deep Representation Learning via Auxiliary Learnable Target Coding [69.79343510578877]
This paper introduces a novel learnable target coding as an auxiliary regularization of deep representation learning.
Specifically, a margin-based triplet loss and a correlation consistency loss on the proposed target codes are designed to encourage more discriminative representations.
arXiv Detail & Related papers (2023-05-30T01:38:54Z) - Sparse, Geometric Autoencoder Models of V1 [2.491226380993217]
We propose an autoencoder architecture whose latent representations are implicitly, locally organized for spectral clustering.
We show that the autoencoder objective function maintains core ideas of the sparse coding framework, yet also offers a promising path to describe the differentiation of receptive fields.
arXiv Detail & Related papers (2023-02-22T06:07:20Z) - What Are You Token About? Dense Retrieval as Distributions Over the
Vocabulary [68.77983831618685]
We propose to interpret the vector representations produced by dual encoders by projecting them into the model's vocabulary space.
We show that the resulting projections contain rich semantic information, and draw connection between them and sparse retrieval.
arXiv Detail & Related papers (2022-12-20T16:03:25Z) - Revisiting Sparse Convolutional Model for Visual Recognition [40.726494290922204]
This paper revisits the sparse convolutional modeling for image classification.
We show that such models have equally strong empirical performance on CIFAR-10, CIFAR-100, and ImageNet datasets.
arXiv Detail & Related papers (2022-10-24T04:29:21Z) - Variable Bitrate Neural Fields [75.24672452527795]
We present a dictionary method for compressing feature grids, reducing their memory consumption by up to 100x.
We formulate the dictionary optimization as a vector-quantized auto-decoder problem which lets us learn end-to-end discrete neural representations in a space where no direct supervision is available.
arXiv Detail & Related papers (2022-06-15T17:58:34Z) - Sparse Coding with Multi-Layer Decoders using Variance Regularization [19.8572592390623]
We propose a novel sparse coding protocol which prevents a collapse in the codes without the need to regularize the decoder.
Our method regularizes the codes directly so that each latent code component has variance greater than a fixed threshold.
We show that sparse autoencoders with multi-layer decoders trained using our variance regularization method produce higher quality reconstructions with sparser representations.
arXiv Detail & Related papers (2021-12-16T21:46:23Z) - Leveraging Sparse Linear Layers for Debuggable Deep Networks [86.94586860037049]
We show how fitting sparse linear models over learned deep feature representations can lead to more debuggable neural networks.
The resulting sparse explanations can help to identify spurious correlations, explain misclassifications, and diagnose model biases in vision and language tasks.
arXiv Detail & Related papers (2021-05-11T08:15:25Z) - SparseGAN: Sparse Generative Adversarial Network for Text Generation [8.634962333084724]
We propose a SparseGAN that generates semantic-interpretable, but sparse sentence representations as inputs to the discriminator.
With such semantic-rich representations, we not only reduce unnecessary noises for efficient adversarial training, but also make the entire training process fully differentiable.
arXiv Detail & Related papers (2021-03-22T04:44:43Z) - NSL: Hybrid Interpretable Learning From Noisy Raw Data [66.15862011405882]
This paper introduces a hybrid neural-symbolic learning framework, called NSL, that learns interpretable rules from labelled unstructured data.
NSL combines pre-trained neural networks for feature extraction with FastLAS, a state-of-the-art ILP system for rule learning under the answer set semantics.
We demonstrate that NSL is able to learn robust rules from MNIST data and achieve comparable or superior accuracy when compared to neural network and random forest baselines.
arXiv Detail & Related papers (2020-12-09T13:02:44Z) - Category-Learning with Context-Augmented Autoencoder [63.05016513788047]
Finding an interpretable non-redundant representation of real-world data is one of the key problems in Machine Learning.
We propose a novel method of using data augmentations when training autoencoders.
We train a Variational Autoencoder in such a way, that it makes transformation outcome predictable by auxiliary network.
arXiv Detail & Related papers (2020-10-10T14:04:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.