論文の概要: Solving The Lunar Lander Problem under Uncertainty using Reinforcement
Learning
- arxiv url: http://arxiv.org/abs/2011.11850v1
- Date: Tue, 24 Nov 2020 02:35:21 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-21 13:46:10.133878
- Title: Solving The Lunar Lander Problem under Uncertainty using Reinforcement
Learning
- Title(参考訳): 強化学習による不確実性下での月面着陸問題の解法
- Authors: Soham Gadgil, Yunfeng Xin, Chengzhe Xu
- Abstract要約: 強化学習(Reinforcement Learning、RL)は、エージェントが不確実性のある環境をナビゲートできるようにするための機械学習の分野である。
我々はOpenAI GymのLunarLander-v2環境上で,SarsaとDeep QLearningという2つのRL技術を実装し,解析する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reinforcement Learning (RL) is an area of machine learning concerned with
enabling an agent to navigate an environment with uncertainty in order to
maximize some notion of cumulative long-term reward. In this paper, we
implement and analyze two different RL techniques, Sarsa and Deep QLearning, on
OpenAI Gym's LunarLander-v2 environment. We then introduce additional
uncertainty to the original problem to test the robustness of the mentioned
techniques. With our best models, we are able to achieve average rewards of
170+ with the Sarsa agent and 200+ with the Deep Q-Learning agent on the
original problem. We also show that these techniques are able to overcome the
additional uncertainities and achieve positive average rewards of 100+ with
both agents. We then perform a comparative analysis of the two techniques to
conclude which agent peforms better.
- Abstract(参考訳): 強化学習(Reinforcement Learning、RL)は、エージェントが累積的長期報酬の概念を最大化するために不確実性のある環境をナビゲートできるようにする機械学習の分野である。
本稿では,OpenAI GymのLunarLander-v2環境上で,SarsaとDeep QLearningという2つのRL手法を実装し,解析する。
次に,本手法のロバスト性をテストするために,元の問題に新たな不確実性を導入する。
我々の最良のモデルでは、Sarsaエージェントで平均170以上の報酬を、オリジナルの問題でDeep Q-Learningエージェントで200以上の報酬を得られる。
また,これらの手法が付加的な不確実性を克服し,双方のエージェントによる100以上の平均報酬を得られることを示す。
次に、2つの手法の比較分析を行い、どのエージェントがより優れているかを結論付ける。
関連論文リスト
- Zero-Sum Positional Differential Games as a Framework for Robust Reinforcement Learning: Deep Q-Learning Approach [2.3020018305241337]
本稿では、位置微分ゲーム理論におけるRRL問題を考慮した最初の提案である。
すなわち、イザックの条件の下では、同じQ-函数をミニマックス方程式とマクシミン・ベルマン方程式の近似解として利用することができる。
本稿ではIssas Deep Q-Networkアルゴリズムについて,他のベースラインRRLやMulti-Agent RLアルゴリズムと比較して,その優位性を示す。
論文 参考訳(メタデータ) (2024-05-03T12:21:43Z) - Impact of Decentralized Learning on Player Utilities in Stackelberg Games [57.08270857260131]
多くの2エージェントシステムでは、各エージェントは別々に学習し、2つのエージェントの報酬は完全に一致しない。
分散学習を用いたStackelbergゲームとしてこれらのシステムをモデル化し、標準後悔ベンチマークが少なくとも1人のプレイヤーにとって最悪の線形後悔をもたらすことを示す。
我々は,これらのベンチマークに関して,両プレイヤーにとってほぼ最適な$O(T2/3)を後悔するアルゴリズムを開発した。
論文 参考訳(メタデータ) (2024-02-29T23:38:28Z) - Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels [112.63440666617494]
強化学習アルゴリズムは成功するが、エージェントと環境の間の大量の相互作用を必要とする。
本稿では,教師なしモデルベースRLを用いてエージェントを事前学習する手法を提案する。
我々はReal-Word RLベンチマークにおいて、適応中の環境摂動に対する抵抗性を示唆し、堅牢な性能を示す。
論文 参考訳(メタデータ) (2022-09-24T14:22:29Z) - Retrieval-Augmented Reinforcement Learning [63.32076191982944]
過去の経験のデータセットを最適な行動にマップするために、ネットワークをトレーニングします。
検索プロセスは、現在のコンテキストで有用なデータセットから情報を取得するために訓練される。
検索強化R2D2はベースラインR2D2エージェントよりもかなり高速に学習し,より高いスコアを得ることを示す。
論文 参考訳(メタデータ) (2022-02-17T02:44:05Z) - REIN-2: Giving Birth to Prepared Reinforcement Learning Agents Using
Reinforcement Learning Agents [0.0]
本稿では,課題学習の目的を課題(あるいは課題の集合)の目的にシフトさせるメタラーニング手法を提案する。
我々のモデルであるREIN-2は、RLフレームワーク内で構成されたメタ学習スキームであり、その目的は、他のRLエージェントの作り方を学ぶメタRLエージェントを開発することである。
従来の最先端のDeep RLアルゴリズムと比較して、実験結果は、人気のあるOpenAI Gym環境において、我々のモデルの顕著な性能を示している。
論文 参考訳(メタデータ) (2021-10-11T10:13:49Z) - MURAL: Meta-Learning Uncertainty-Aware Rewards for Outcome-Driven
Reinforcement Learning [65.52675802289775]
本研究では,不確かさを意識した分類器が,強化学習の難しさを解消できることを示す。
正規化最大度(NML)分布の計算法を提案する。
得られたアルゴリズムは、カウントベースの探索法と、報酬関数を学習するための先行アルゴリズムの両方に多くの興味深い関係を持つことを示す。
論文 参考訳(メタデータ) (2021-07-15T08:19:57Z) - Explore and Control with Adversarial Surprise [78.41972292110967]
強化学習(Reinforcement Learning, RL)は、目標指向のポリシーを学習するためのフレームワークである。
本稿では,RLエージェントが経験した驚きの量と競合する2つのポリシーを相殺する対戦ゲームに基づく,新しい教師なしRL手法を提案する。
本手法は, 明確な相転移を示すことによって, 複雑なスキルの出現につながることを示す。
論文 参考訳(メタデータ) (2021-07-12T17:58:40Z) - Robust Deep Reinforcement Learning through Adversarial Loss [74.20501663956604]
近年の研究では、深層強化学習剤は、エージェントの入力に対する小さな逆方向の摂動に弱いことが示されている。
敵攻撃に対する堅牢性を向上した強化学習エージェントを訓練するための原則的フレームワークであるRADIAL-RLを提案する。
論文 参考訳(メタデータ) (2020-08-05T07:49:42Z) - Active Finite Reward Automaton Inference and Reinforcement Learning
Using Queries and Counterexamples [31.31937554018045]
深部強化学習(RL)法は, 良好な性能を達成するために, 環境探索からの集中的なデータを必要とする。
本稿では,RLエージェントが探索過程を推論し,その将来的な探索を効果的に導くための高レベルの知識を蒸留するフレームワークを提案する。
具体的には、L*学習アルゴリズムを用いて、有限報酬オートマトンという形で高レベルの知識を学習する新しいRLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-28T21:13:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。