Multidimensional hydrogenic states: Position and momentum expectation
values
- URL: http://arxiv.org/abs/2011.12242v2
- Date: Thu, 17 Jun 2021 08:05:07 GMT
- Title: Multidimensional hydrogenic states: Position and momentum expectation
values
- Authors: J. S. Dehesa, D. Puertas-Centeno
- Abstract summary: The position and momentum probability densities of a multidimensional quantum system are fully characterized by means of the radial expectation values $langle ralpha rangle$ and $leftlangle palpha rightrangle$, respectively.
These quantities have not been calculated in an analytical and effective manner up until now except for a number of three-dimensional hydrogenic states.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The position and momentum probability densities of a multidimensional quantum
system are fully characterized by means of the radial expectation values
$\langle r^\alpha \rangle$ and $\left\langle p^\alpha \right\rangle$,
respectively. These quantities, which describe and/or are closely related to
various fundamental properties of realistic systems, have not been calculated
in an analytical and effective manner up until now except for a number of
three-dimensional hydrogenic states. In this work we explicitly show these
expectation values for all discrete stationary $D$-dimensional hydrogenic
states in terms of the dimensionality $D$, the strength of the Coulomb
potential (i.e., the nuclear charge) and the $D$ state's hyperquantum numbers.
Emphasis is placed on the momentum expectation values (mostly unknown,
specially the ones with odd order) which are obtained in a closed compact form.
Applications are made to circular, $S$-wave, high-energy (Rydberg) and
high-dimensional (pseudo-classical) states of three- and multidimensional
hydrogenic atoms. This has been possible because of the analytical algebraic
and asymptotical properties of the special functions (orthogonal polynomials,
hyperspherical harmonics) which control the states' wavefunctions. Finally,
some Heisenberg-like uncertainty inequalities satisfied by these dispersion
quantities are also given and discussed.
Related papers
- Scattering Neutrinos, Spin Models, and Permutations [42.642008092347986]
We consider a class of Heisenberg all-to-all coupled spin models inspired by neutrino interactions in a supernova with $N$ degrees of freedom.
These models are characterized by a coupling matrix that is relatively simple in the sense that there are only a few, relative to $N$, non-trivial eigenvalues.
arXiv Detail & Related papers (2024-06-26T18:27:15Z) - Orthonormal bases of extreme quantumness [1.1510009152620668]
Some coherent and anticoherent spin states are known as optimal quantum rotosensors.
We introduce a measure of quantumness for orthonormal bases of spin states, determined by the average anticoherence of individual vectors and the Wehrl entropy.
arXiv Detail & Related papers (2023-06-01T10:35:45Z) - Arbitrary $\ell$-state solutions of the Klein-Gordon equation with the
Eckart plus a class of Yukawa potential and its non-relativistic thermal
properties [0.0]
We present any $ell$-state energy eigenvalues and the corresponding normalized wave functions of a mentioned system in a closed form.
We calculate the non-relativistic thermodynamic quantities for the potential model in question, and investigate them for a few diatomic molecules.
arXiv Detail & Related papers (2023-04-01T23:22:23Z) - Concentration bounds for quantum states and limitations on the QAOA from
polynomial approximations [17.209060627291315]
We prove concentration for the following classes of quantum states: (i) output states of shallow quantum circuits, answering an open question from [DPMRF22]; (ii) injective matrix product states, answering an open question from [DPMRF22]; (iii) output states of dense Hamiltonian evolution, i.e. states of the form $eiota H(p) cdots eiota H(1) |psirangle for any $n$-qubit product state $|psirangle$, where each $H(
arXiv Detail & Related papers (2022-09-06T18:00:02Z) - Partons as unique ground states of quantum Hall parent Hamiltonians: The
case of Fibonacci anyons [9.987055028382876]
We present microscopic, multiple Landau level, (frustration-free and positive semi-definite) parent Hamiltonians whose ground states are parton-like.
We prove ground state energy monotonicity theorems for systems with different particle numbers in multiple Landau levels.
We establish complete sets of zero modes of special Hamiltonians stabilizing parton-like states.
arXiv Detail & Related papers (2022-04-20T18:00:00Z) - The bound-state solutions of the one-dimensional pseudoharmonic
oscillator [0.0]
We study the bound states of a quantum mechanical system governed by a constant $alpha$.
For attractive potentials within the range $-1/4leqalpha0$, there is an even-parity ground state with increasingly negative energy.
We show how the regularized excited states approach their unregularized counterparts.
arXiv Detail & Related papers (2021-11-24T23:03:10Z) - Dimerization of many-body subradiant states in waveguide quantum
electrodynamics [137.6408511310322]
We study theoretically subradiant states in the array of atoms coupled to photons propagating in a one-dimensional waveguide.
We introduce a generalized many-body entropy of entanglement based on exact numerical diagonalization.
We reveal the breakdown of fermionized subradiant states with increase of $f$ with emergence of short-ranged dimerized antiferromagnetic correlations.
arXiv Detail & Related papers (2021-06-17T12:17:04Z) - Attainability and lower semi-continuity of the relative entropy of
entanglement, and variations on the theme [8.37609145576126]
The relative entropy of entanglement $E_Rite is defined as the distance of a multi-part quantum entanglement from the set of separable states as measured by the quantum relative entropy.
We show that this state is always achieved, i.e. any state admits a closest separable state, even in dimensions; also, $E_Rite is everywhere lower semi-negative $lambda_$quasi-probability distribution.
arXiv Detail & Related papers (2021-05-17T18:03:02Z) - Extremal quantum states [0.41998444721319206]
We peruse quantumness from a variety of viewpoints, concentrating on phase-space formulations.
The symmetry-transcending properties of the Husimi $Q$ function make it our basic tool.
We use these quantities to formulate extremal principles and determine in this way which states are the most and least "quantum"
arXiv Detail & Related papers (2020-10-09T18:00:02Z) - Dispersion and entropy-like measures of multidimensional harmonic
systems. Application to Rydberg states and high-dimensional oscillators [0.0]
Spreading properties of the stationary states of the quantum multidimensional harmonic oscillator are discussed.
We have used a methodology where the theoretical determination of the integral functionals of the Laguerre and Gegenbauers are discussed.
arXiv Detail & Related papers (2020-09-04T06:29:49Z) - Subradiant emission from regular atomic arrays: universal scaling of
decay rates from the generalized Bloch theorem [8.527960992762184]
We show that a dispersion relation leads to the existence of subradiant states of finite one-dimensional arrays of $N$ atoms with decay rates scaling as $N-(s+1)$.
This explains the recently discovered $N-3$ scaling and it leads to the prediction of power law scaling with higher power for special values of the lattice period.
arXiv Detail & Related papers (2020-06-11T11:06:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.