Extremal quantum states
- URL: http://arxiv.org/abs/2010.04732v2
- Date: Thu, 3 Dec 2020 20:28:23 GMT
- Title: Extremal quantum states
- Authors: Aaron Z. Goldberg, Andrei B. Klimov, Markus Grassl, Gerd Leuchs and
Luis L. S\'anchez-Soto
- Abstract summary: We peruse quantumness from a variety of viewpoints, concentrating on phase-space formulations.
The symmetry-transcending properties of the Husimi $Q$ function make it our basic tool.
We use these quantities to formulate extremal principles and determine in this way which states are the most and least "quantum"
- Score: 0.41998444721319206
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The striking differences between quantum and classical systems predicate
disruptive quantum technologies. We peruse quantumness from a variety of
viewpoints, concentrating on phase-space formulations because they can be
applied beyond particular symmetry groups. The symmetry-transcending properties
of the Husimi $Q$ function make it our basic tool. In terms of the latter, we
examine quantities such as the Wehrl entropy, inverse participation ratio,
cumulative multipolar distribution, and metrological power, which are linked to
intrinsic properties of any quantum state. We use these quantities to formulate
extremal principles and determine in this way which states are the most and
least "quantum;" the corresponding properties and potential usefulness of each
extremal principle are explored in detail. While the extrema largely coincide
for continuous-variable systems, our analysis of spin systems shows that care
must be taken when applying an extremal principle to new contexts.
Related papers
- One-Shot Min-Entropy Calculation And Its Application To Quantum Cryptography [21.823963925581868]
We develop a one-shot lower bound calculation technique for the min-entropy of a classical-quantum state.
It gives an alternative tight finite-data analysis for the well-known BB84 quantum key distribution protocol.
It provides a security proof for a novel source-independent continuous-variable quantum random number generation protocol.
arXiv Detail & Related papers (2024-06-21T15:11:26Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Area laws and thermalization from classical entropies in a Bose-Einstein condensate [0.0]
Local quantum entropies are nonlinear functionals of the underlying quantum state.
We show that suitably chosen classical entropies capture the very same features as their quantum analogs.
arXiv Detail & Related papers (2024-04-18T16:53:03Z) - Magic in generalized Rokhsar-Kivelson wavefunctions [0.0]
We study magic, as quantified by the stabilizer Renyi entropy, in a class of models known as generalized Rokhsar-Kive systems.
We find that the maximum of the SRE generically occurs at a cusp away from the quantum critical point, where the derivative suddenly changes sign.
arXiv Detail & Related papers (2023-11-14T19:00:05Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Geometric phases along quantum trajectories [58.720142291102135]
We study the distribution function of geometric phases in monitored quantum systems.
For the single trajectory exhibiting no quantum jumps, a topological transition in the phase acquired after a cycle.
For the same parameters, the density matrix does not show any interference.
arXiv Detail & Related papers (2023-01-10T22:05:18Z) - Theory of Quantum Generative Learning Models with Maximum Mean
Discrepancy [67.02951777522547]
We study learnability of quantum circuit Born machines (QCBMs) and quantum generative adversarial networks (QGANs)
We first analyze the generalization ability of QCBMs and identify their superiorities when the quantum devices can directly access the target distribution.
Next, we prove how the generalization error bound of QGANs depends on the employed Ansatz, the number of qudits, and input states.
arXiv Detail & Related papers (2022-05-10T08:05:59Z) - Exact-WKB analysis for SUSY and quantum deformed potentials: Quantum
mechanics with Grassmann fields and Wess-Zumino terms [0.0]
Quantum deformed potentials arise naturally in quantum mechanical systems of one bosonic coordinate coupled to $N_f$ Grassmann valued fermionic coordinates.
Using exact WKB, we derive exact quantization condition and its median resummation.
For quantum deformed triple-well potential, we demonstrate the P-NP relation, by computing period integrals and Mellin transform.
arXiv Detail & Related papers (2021-11-10T20:35:38Z) - Quantum coherence with incomplete set of pointers and corresponding
wave-particle duality [0.0]
Quantum coherence quantifies the amount of superposition in a quantum system.
We develop the corresponding resource theory, identifying the free states and operations.
We obtain a complementarity relation between the so-defined quantum coherence and the which-path information in an interferometric set-up.
arXiv Detail & Related papers (2021-08-12T16:55:40Z) - Experimental Validation of Fully Quantum Fluctuation Theorems Using
Dynamic Bayesian Networks [48.7576911714538]
Fluctuation theorems are fundamental extensions of the second law of thermodynamics for small systems.
We experimentally verify detailed and integral fully quantum fluctuation theorems for heat exchange using two quantum-correlated thermal spins-1/2 in a nuclear magnetic resonance setup.
arXiv Detail & Related papers (2020-12-11T12:55:17Z) - Experimental measurement of the divergent quantum metric of an
exceptional point [10.73176455098217]
We report the first experimental measurement of the quantum metric in a non-Hermitian system.
The specific platform under study is an organic microcavity with exciton-polariton eigenstates, which demonstrate exceptional points.
arXiv Detail & Related papers (2020-11-24T11:31:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.