Distribution Conditional Denoising: A Flexible Discriminative Image
Denoiser
- URL: http://arxiv.org/abs/2011.12398v1
- Date: Tue, 24 Nov 2020 21:27:18 GMT
- Title: Distribution Conditional Denoising: A Flexible Discriminative Image
Denoiser
- Authors: Anthony Kelly
- Abstract summary: A flexible discriminative image denoiser is introduced in which multi-task learning methods are applied to a densoising FCN based on U-Net.
It has been shown that this conditional training method can generalise a fixed noise level U-Net denoiser to a variety of noise levels.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: A flexible discriminative image denoiser is introduced in which multi-task
learning methods are applied to a densoising FCN based on U-Net. The
activations of the U-Net model are modified by affine transforms that are a
learned function of conditioning inputs. The learning procedure for multiple
noise types and levels involves applying a distribution of noise parameters
during training to the conditioning inputs, with the same noise parameters
applied to a noise generating layer at the input (similar to the approach taken
in a denoising autoencoder). It is shown that this flexible denoising model
achieves state of the art performance on images corrupted with Gaussian and
Poisson noise. It has also been shown that this conditional training method can
generalise a fixed noise level U-Net denoiser to a variety of noise levels.
Related papers
- Self-Calibrated Variance-Stabilizing Transformations for Real-World Image Denoising [19.08732222562782]
Supervised deep learning has become the method of choice for image denoising.
We show that, contrary to popular belief, denoising networks specialized in the removal of Gaussian noise can be efficiently leveraged in favor of real-world image denoising.
arXiv Detail & Related papers (2024-07-24T16:23:46Z) - Blue noise for diffusion models [50.99852321110366]
We introduce a novel and general class of diffusion models taking correlated noise within and across images into account.
Our framework allows introducing correlation across images within a single mini-batch to improve gradient flow.
We perform both qualitative and quantitative evaluations on a variety of datasets using our method.
arXiv Detail & Related papers (2024-02-07T14:59:25Z) - NLIP: Noise-robust Language-Image Pre-training [95.13287735264937]
We propose a principled Noise-robust Language-Image Pre-training framework (NLIP) to stabilize pre-training via two schemes: noise-harmonization and noise-completion.
Our NLIP can alleviate the common noise effects during image-text pre-training in a more efficient way.
arXiv Detail & Related papers (2022-12-14T08:19:30Z) - CFNet: Conditional Filter Learning with Dynamic Noise Estimation for
Real Image Denoising [37.29552796977652]
This paper considers real noise approximated by heteroscedastic Gaussian/Poisson Gaussian distributions with in-camera signal processing pipelines.
We propose a novel conditional filter in which the optimal kernels for different feature positions can be adaptively inferred by local features from the image and the noise map.
Also, we bring the thought that alternatively performs noise estimation and non-blind denoising into CNN structure, which continuously updates noise prior to guide the iterative feature denoising.
arXiv Detail & Related papers (2022-11-26T14:28:54Z) - Noise2Kernel: Adaptive Self-Supervised Blind Denoising using a Dilated
Convolutional Kernel Architecture [3.796436257221662]
We propose a dilated convolutional network that satisfies an invariant property, allowing efficient kernel-based training without random masking.
We also propose an adaptive self-supervision loss to circumvent the requirement of zero-mean constraint, which is specifically effective in removing salt-and-pepper or hybrid noise.
arXiv Detail & Related papers (2020-12-07T12:13:17Z) - Adaptive noise imitation for image denoising [58.21456707617451]
We develop a new textbfadaptive noise imitation (ADANI) algorithm that can synthesize noisy data from naturally noisy images.
To produce realistic noise, a noise generator takes unpaired noisy/clean images as input, where the noisy image is a guide for noise generation.
Coupling the noisy data output from ADANI with the corresponding ground-truth, a denoising CNN is then trained in a fully-supervised manner.
arXiv Detail & Related papers (2020-11-30T02:49:36Z) - Unpaired Learning of Deep Image Denoising [80.34135728841382]
This paper presents a two-stage scheme by incorporating self-supervised learning and knowledge distillation.
For self-supervised learning, we suggest a dilated blind-spot network (D-BSN) to learn denoising solely from real noisy images.
Experiments show that our unpaired learning method performs favorably on both synthetic noisy images and real-world noisy photographs.
arXiv Detail & Related papers (2020-08-31T16:22:40Z) - Flexible Image Denoising with Multi-layer Conditional Feature Modulation [56.018132592622706]
We present a novel flexible image enoising network (CFMNet) by equipping an U-Net backbone with conditional feature modulation (CFM) modules.
In comparison to channel-wise shifting only in the first layer, CFMNet can make better use of noise level information by deploying multiple layers of CFM.
Our CFMNet is effective in exploiting noise level information for flexible non-blind denoising, and performs favorably against the existing deep image denoising methods in terms of both quantitative metrics and visual quality.
arXiv Detail & Related papers (2020-06-24T06:00:00Z) - NoiseBreaker: Gradual Image Denoising Guided by Noise Analysis [5.645552640953684]
This paper proposes a gradual denoising strategy that iteratively detects the dominating noise in an image, and removes it using a tailored denoiser.
The method provides an insight on the nature of the encountered noise, and it makes it possible to extend an existing denoiser with new noise nature.
arXiv Detail & Related papers (2020-02-18T11:09:03Z) - Variational Denoising Network: Toward Blind Noise Modeling and Removal [59.36166491196973]
Blind image denoising is an important yet very challenging problem in computer vision.
We propose a new variational inference method, which integrates both noise estimation and image denoising.
arXiv Detail & Related papers (2019-08-29T15:54:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.