論文の概要: Automatic Identification of MHD Modes in Magnetic Fluctuations
Spectrograms using Deep Learning Techniques
- arxiv url: http://arxiv.org/abs/2011.12615v2
- Date: Mon, 5 Apr 2021 11:10:12 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-21 03:49:21.051736
- Title: Automatic Identification of MHD Modes in Magnetic Fluctuations
Spectrograms using Deep Learning Techniques
- Title(参考訳): 深層学習技術を用いた磁気ゆらぎスペクトル中のMHDモードの自動同定
- Authors: A. Bustos and E. Ascasibar and A.Cappa and R. Mayo-Garcia
- Abstract要約: MHD発振モードは外部の粒子/エネルギーフラックスに寄与し、点火状態からデバイスを遠ざけることができる。
本論文では,ミルノフコイル分光図を入力データとする振動モードを同定するソフトウェアツールを提案する。
TJ-IIステラレータデータベースから手動で注釈付きスペクトログラムをトレーニングした畳み込みニューラルネットワークを使用している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The control and mitigation of MHD oscillations modes is an open problem in
fusion science because they can contribute to the outward particle/energy flux
and can drive the device away from ignition conditions. It is then of general
interest to extract the mode information from large experimental databases in a
fast and reliable way. We present a software tool based on Deep Learning that
can identify these oscillations modes taking Mirnov coil spectrograms as input
data. It uses Convolutional Neural Networks that we trained with manually
annotated spectrograms from the TJ-II stellarator database. We have tested
several detector architectures, resultingin a detector AUC score of 0.99 on the
test set. Finally, it is applied to find MHD modes in our spectrograms to show
how this new software tool can be used to mine other databases.
- Abstract(参考訳): MHD発振モードの制御と緩和は、融合科学において、外部の粒子/エネルギーフラックスに寄与し、点火状態からデバイスを遠ざけることができるため、オープンな問題である。
その上で,大規模実験データベースからモード情報を高速かつ信頼性の高い方法で抽出することが一般的である。
本稿では,これらの振動モードを入力データとしてmirnovコイルスペクトログラムを識別する深層学習に基づくソフトウェアツールを提案する。
TJ-IIステラレータデータベースから手動で注釈付きスペクトログラムをトレーニングした畳み込みニューラルネットワークを使用している。
いくつかの検出器アーキテクチャをテストした結果、検出器 auc スコアはテストセット上で 0.99 となった。
最後に、スペクトログラム中のmhdモードを見つけ、この新しいソフトウェアツールを使って他のデータベースをマイニングする方法を示します。
関連論文リスト
- Anomaly Detection of Tabular Data Using LLMs [54.470648484612866]
我々は,事前訓練された大規模言語モデル (LLM) がゼロショットバッチレベルの異常検出器であることを示す。
本稿では,実異常検出におけるLCMの潜在性を明らかにするために,エンドツーエンドの微調整手法を提案する。
論文 参考訳(メタデータ) (2024-06-24T04:17:03Z) - Frequency-Aware Deepfake Detection: Improving Generalizability through
Frequency Space Learning [81.98675881423131]
この研究は、目に見えないディープフェイク画像を効果的に識別できるユニバーサルディープフェイク検出器を開発するという課題に対処する。
既存の周波数ベースのパラダイムは、偽造検出のためにGANパイプラインのアップサンプリング中に導入された周波数レベルのアーティファクトに依存している。
本稿では、周波数領域学習を中心にしたFreqNetと呼ばれる新しい周波数認識手法を導入し、ディープフェイク検出器の一般化性を高めることを目的とする。
論文 参考訳(メタデータ) (2024-03-12T01:28:00Z) - Multi-Class Deep SVDD: Anomaly Detection Approach in Astronomy with
Distinct Inlier Categories [46.34797489552547]
我々は,異なるデータ分布を持つ複数の不整合カテゴリを扱うために,MCDSVDD(Multi-class Deep Support Vector Data Description)を提案する。
MCDSVDDはニューラルネットワークを使用してデータをハイパースフィアにマッピングする。
以上の結果から, 異常源の検出にMDCSVDDが有効であることが示唆された。
論文 参考訳(メタデータ) (2023-08-09T15:10:53Z) - Closing the loop: Autonomous experiments enabled by
machine-learning-based online data analysis in synchrotron beamline
environments [80.49514665620008]
機械学習は、大規模または高速に生成されたデータセットを含む研究を強化するために使用できる。
本研究では,X線反射法(XRR)のための閉ループワークフローへのMLの導入について述べる。
本研究では,ビームライン制御ソフトウェア環境に付加的なソフトウェア依存関係を導入することなく,実験中の基本データ解析をリアルタイムで行うソリューションを提案する。
論文 参考訳(メタデータ) (2023-06-20T21:21:19Z) - Convolutional Monge Mapping Normalization for learning on sleep data [63.22081662149488]
我々は、CMMN(Convolutional Monge Mapping Normalization)と呼ばれる新しい手法を提案する。
CMMNは、そのパワースペクトル密度(PSD)をトレーニングデータに基づいて推定されるワッサーシュタインバリセンタに適応させるために、信号をフィルタリングする。
睡眠脳波データに関する数値実験により、CMMNはニューラルネットワークアーキテクチャから独立して、顕著で一貫したパフォーマンス向上をもたらすことが示された。
論文 参考訳(メタデータ) (2023-05-30T08:24:01Z) - MLGWSC-1: The first Machine Learning Gravitational-Wave Search Mock Data
Challenge [110.7678032481059]
第1回機械学習重力波探索モックデータチャレンジ(MLGWSC-1)の結果を示す。
この課題のために、参加するグループは、より現実的な雑音に埋め込まれた複雑さと持続期間が増大する二元ブラックホールの融合から重力波信号を特定する必要があった。
この結果から,現在の機械学習検索アルゴリズムは,限られたパラメータ領域においてすでに十分敏感である可能性が示唆された。
論文 参考訳(メタデータ) (2022-09-22T16:44:59Z) - Training Process of Unsupervised Learning Architecture for Gravity Spy
Dataset [2.8555963243398073]
重力波検出器のデータに現れる過渡ノイズは、しばしば問題を引き起こす。
過渡ノイズは環境や機器と関連していると考えられているため、その分類は、その起源を理解し、検出器の性能を向上させるのに役立つだろう。
前報では、教師なしディープラーニングと変分オートエンコーダと不変情報クラスタリングを組み合わせた、時間周波数2次元画像(分光図)を用いた過渡雑音の分類アーキテクチャを提案する。
先進レーザ干渉計重力波観測装置(Advanced Laser Interferometer Gravitational-Wave Observatory)からなる重力スピーデータセットに,教師なし学習アーキテクチャを適用した。
論文 参考訳(メタデータ) (2022-08-07T02:51:36Z) - Design of an Novel Spectrum Sensing Scheme Based on Long Short-Term
Memory and Experimental Validation [0.7349727826230862]
深層学習ネットワーク(DLN)の重要な要素である長期記憶(LSTM)に基づくスペクトルセンシング手法を提案する。
提案手法は, Adalm Pluto を用いた実証実験により検証した。
論文 参考訳(メタデータ) (2021-11-21T08:51:48Z) - FMNet: Latent Feature-wise Mapping Network for Cleaning up Noisy
Micro-Doppler Spectrogram [2.9849405664643585]
ノイズの多い環境は、マイクロドップラー分光器の解釈不能な動きパターンを引き起こす。
レーダーの帰還は しばしば マルチパス 乱雑 干渉に悩まされる
本稿では,FMNet (Feature Mapping Network) と呼ばれる潜在機能対応マッピング手法を提案する。
論文 参考訳(メタデータ) (2021-07-09T19:20:41Z) - Detection of gravitational-wave signals from binary neutron star mergers
using machine learning [52.77024349608834]
本稿では,重力波検出器の時系列ひずみデータを用いたニューラルネットワークに基づく機械学習アルゴリズムを提案する。
信号対雑音比が25未満の信号に対する感度は6因子改善した。
保守的な推定は、我々のアルゴリズムが信号の到着からアラート発生までの平均10.2秒の遅延を発生させることを示している。
論文 参考訳(メタデータ) (2020-06-02T10:20:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。