論文の概要: Convolutional Monge Mapping Normalization for learning on sleep data
- arxiv url: http://arxiv.org/abs/2305.18831v3
- Date: Mon, 13 Nov 2023 14:53:01 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-14 21:41:17.504428
- Title: Convolutional Monge Mapping Normalization for learning on sleep data
- Title(参考訳): 睡眠データ学習のための畳み込みモンジマッピング正規化
- Authors: Th\'eo Gnassounou, R\'emi Flamary, Alexandre Gramfort
- Abstract要約: 我々は、CMMN(Convolutional Monge Mapping Normalization)と呼ばれる新しい手法を提案する。
CMMNは、そのパワースペクトル密度(PSD)をトレーニングデータに基づいて推定されるワッサーシュタインバリセンタに適応させるために、信号をフィルタリングする。
睡眠脳波データに関する数値実験により、CMMNはニューラルネットワークアーキテクチャから独立して、顕著で一貫したパフォーマンス向上をもたらすことが示された。
- 参考スコア(独自算出の注目度): 63.22081662149488
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In many machine learning applications on signals and biomedical data,
especially electroencephalogram (EEG), one major challenge is the variability
of the data across subjects, sessions, and hardware devices. In this work, we
propose a new method called Convolutional Monge Mapping Normalization (CMMN),
which consists in filtering the signals in order to adapt their power spectrum
density (PSD) to a Wasserstein barycenter estimated on training data. CMMN
relies on novel closed-form solutions for optimal transport mappings and
barycenters and provides individual test time adaptation to new data without
needing to retrain a prediction model. Numerical experiments on sleep EEG data
show that CMMN leads to significant and consistent performance gains
independent from the neural network architecture when adapting between
subjects, sessions, and even datasets collected with different hardware.
Notably our performance gain is on par with much more numerically intensive
Domain Adaptation (DA) methods and can be used in conjunction with those for
even better performances.
- Abstract(参考訳): 信号や生体データ、特に脳波(EEG)に関する多くの機械学習応用において、大きな課題は、被験者、セッション、ハードウェアデバイス間でのデータのばらつきである。
本研究では,そのパワースペクトル密度(psd)をトレーニングデータから推定したwasserstein barycenterに適応させるために,信号をフィルタリングする畳み込みモンジマッピング正規化(cmmn)と呼ばれる新しい手法を提案する。
CMMNは、最適なトランスポートマッピングとバリセンタのための新しいクローズドフォームソリューションに依存し、予測モデルを再トレーニングすることなく、新しいデータへの個別のテスト時間適応を提供する。
睡眠脳波データに関する数値実験により、CMMNは、被験者、セッション、さらには異なるハードウェアで収集されたデータセット間の適応において、ニューラルネットワークアーキテクチャから大きく、一貫したパフォーマンス向上をもたらすことが示された。
特に、我々のパフォーマンス向上は、はるかに数値的なドメイン適応(DA)メソッドと同等であり、より良いパフォーマンスのためにそれらと併用することができる。
関連論文リスト
- Automatic Classification of Sleep Stages from EEG Signals Using Riemannian Metrics and Transformer Networks [6.404789669795639]
睡眠医学において、被験者の睡眠の進化を評価するには、脳波(EEG)信号の高価な手作業によるスコアが伴うことが多い。
本研究では,Symmetric Definite Positive (SPD) の性質を犠牲にすることなく,学習した信号的特徴をそれらの行列に組み込む新しい方法を提案する。
論文 参考訳(メタデータ) (2024-10-18T06:49:52Z) - Self-Supervised Pre-training Tasks for an fMRI Time-series Transformer in Autism Detection [3.665816629105171]
自閉症スペクトラム障害(Autism Spectrum disorder、ASD)は、様々な症状や障害の程度を包含する神経発達障害である。
我々は,関数接続を計算せずに時系列fMRIデータを直接解析するトランスフォーマーベースの自己教師型フレームワークを開発した。
ランダムにROIをマスキングすると、トレーニング前のステップでランダムにマスキングする時間ポイントよりも、モデル性能が向上することを示す。
論文 参考訳(メタデータ) (2024-09-18T20:29:23Z) - MDM: Advancing Multi-Domain Distribution Matching for Automatic Modulation Recognition Dataset Synthesis [35.07663680944459]
ディープラーニング技術は、AMR(Automatic Modulation Recognition)タスクにうまく導入されている。
ディープラーニングの成功はすべて、大規模なデータセットのトレーニングによるものだ。
大量のデータの問題を解決するため、一部の研究者はデータ蒸留法を提唱した。
論文 参考訳(メタデータ) (2024-08-05T14:16:54Z) - Multi-Source and Test-Time Domain Adaptation on Multivariate Signals using Spatio-Temporal Monge Alignment [59.75420353684495]
コンピュータビジョンやバイオメディカルデータなどの信号に対する機械学習の応用は、ハードウェアデバイスやセッション記録にまたがる変動のため、しばしば課題に直面している。
本研究では,これらの変動を緩和するために,時空間モンジュアライメント(STMA)を提案する。
我々はSTMAが、非常に異なる設定で取得したデータセット間で、顕著で一貫したパフォーマンス向上をもたらすことを示す。
論文 参考訳(メタデータ) (2024-07-19T13:33:38Z) - Physics-informed and Unsupervised Riemannian Domain Adaptation for Machine Learning on Heterogeneous EEG Datasets [53.367212596352324]
脳波信号物理を利用した教師なし手法を提案する。
脳波チャンネルをフィールド、ソースフリーなドメイン適応を用いて固定位置にマッピングする。
提案手法は脳-コンピュータインタフェース(BCI)タスクおよび潜在的なバイオマーカー応用におけるロバストな性能を示す。
論文 参考訳(メタデータ) (2024-03-07T16:17:33Z) - DaFoEs: Mixing Datasets towards the generalization of vision-state
deep-learning Force Estimation in Minimally Invasive Robotic Surgery [6.55111164866752]
深部神経モデルのトレーニングを行うために,様々なソフト環境を持つ新しい視覚触覚データセット(DaFoEs)を提案する。
また,単一入力や入力シーケンスを用いて腹腔鏡ツールが行う力を予測するための可変エンコーダデコーダアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-01-17T14:39:55Z) - Assessing Neural Network Representations During Training Using
Noise-Resilient Diffusion Spectral Entropy [55.014926694758195]
ニューラルネットワークにおけるエントロピーと相互情報は、学習プロセスに関する豊富な情報を提供する。
データ幾何を利用して基礎となる多様体にアクセスし、これらの情報理論測度を確実に計算する。
本研究は,高次元シミュレーションデータにおける固有次元と関係強度の耐雑音性の測定結果である。
論文 参考訳(メタデータ) (2023-12-04T01:32:42Z) - ScoreMix: A Scalable Augmentation Strategy for Training GANs with
Limited Data [93.06336507035486]
GAN(Generative Adversarial Networks)は通常、限られたトレーニングデータが利用できる場合、過度に適合する。
ScoreMixは、様々な画像合成タスクのための、新しくスケーラブルなデータ拡張手法である。
論文 参考訳(メタデータ) (2022-10-27T02:55:15Z) - MS-Net: Multi-Site Network for Improving Prostate Segmentation with
Heterogeneous MRI Data [75.73881040581767]
本稿では,ロバスト表現を学習し,前立腺のセグメンテーションを改善するための新しいマルチサイトネットワーク(MS-Net)を提案する。
当社のMS-Netは,すべてのデータセットのパフォーマンスを一貫して改善し,マルチサイト学習における最先端の手法よりも優れています。
論文 参考訳(メタデータ) (2020-02-09T14:11:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。