論文の概要: Unsupervised Domain Adaptation in Semantic Segmentation via Orthogonal
and Clustered Embeddings
- arxiv url: http://arxiv.org/abs/2011.12616v1
- Date: Wed, 25 Nov 2020 10:06:22 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-21 03:06:02.416448
- Title: Unsupervised Domain Adaptation in Semantic Segmentation via Orthogonal
and Clustered Embeddings
- Title(参考訳): 直交埋め込みとクラスター埋め込みによる意味セグメンテーションにおける教師なし領域適応
- Authors: Marco Toldo, Umberto Michieli, Pietro Zanuttigh
- Abstract要約: 本稿では,機能クラスタリング手法に基づく効果的なUnsupervised Domain Adaptation(UDA)戦略を提案する。
識別的クラスタリング性能を高めるために,2つの新しい学習目標を導入する。
- 参考スコア(独自算出の注目度): 25.137859989323537
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning frameworks allowed for a remarkable advancement in semantic
segmentation, but the data hungry nature of convolutional networks has rapidly
raised the demand for adaptation techniques able to transfer learned knowledge
from label-abundant domains to unlabeled ones. In this paper we propose an
effective Unsupervised Domain Adaptation (UDA) strategy, based on a feature
clustering method that captures the different semantic modes of the feature
distribution and groups features of the same class into tight and
well-separated clusters. Furthermore, we introduce two novel learning
objectives to enhance the discriminative clustering performance: an
orthogonality loss forces spaced out individual representations to be
orthogonal, while a sparsity loss reduces class-wise the number of active
feature channels. The joint effect of these modules is to regularize the
structure of the feature space. Extensive evaluations in the synthetic-to-real
scenario show that we achieve state-of-the-art performance.
- Abstract(参考訳): 深層学習フレームワークはセマンティックセグメンテーションの顕著な進歩を可能にしたが、畳み込みネットワークのデータ飢えの性質は、ラベル付きドメインからラベルなしドメインへ学習知識を伝達できる適応技術への需要を急速に高めた。
本稿では,特徴分布の異なるセマンティックモードを抽出し,同一クラスの特徴を密に分離したクラスタにグループ化する特徴クラスタリング手法に基づく,効果的なUnsupervised Domain Adaptation (UDA) 戦略を提案する。
さらに,識別的クラスタリング性能を高めるための2つの新たな学習目標を紹介した。直交性喪失力は,個々の表現を直交に分割し,スパーシビリティ損失は,アクティブな特徴チャネルのクラスワイドを減少させる。
これらのモジュールの合同効果は、特徴空間の構造を正則化することである。
人工現実シナリオにおける広範囲な評価は、最先端の性能を達成することを示す。
関連論文リスト
- Instance Adaptive Prototypical Contrastive Embedding for Generalized
Zero Shot Learning [11.720039414872296]
一般的なゼロショット学習は、トレーニング中に目に見えないラベルがアクセスできないと仮定して、目に見えないラベルと見えないラベルからサンプルを分類することを目的としている。
GZSLの最近の進歩は、生成ネットワークにコントラッシブラーニングベースの埋め込みを組み込むことによって、加速している。
論文 参考訳(メタデータ) (2023-09-13T14:26:03Z) - Deep face recognition with clustering based domain adaptation [57.29464116557734]
そこで本研究では,ターゲットドメインとソースがクラスを共有しない顔認識タスクを対象とした,クラスタリングに基づく新しいドメイン適応手法を提案する。
本手法は,特徴領域をグローバルに整列させ,その一方で,対象クラスタを局所的に識別することで,識別対象特徴を効果的に学習する。
論文 参考訳(メタデータ) (2022-05-27T12:29:11Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
半教師付きドメイン適応 (SSDA) は,1) アノテーションの低いデータに過度に適合する手法と,2) ドメイン間の分散シフトの両方を克服しなければならない課題である。
SSLとDAの協調を正規化するための適応型構造学習手法を提案する。
論文 参考訳(メタデータ) (2021-12-12T06:11:16Z) - Adapting Segmentation Networks to New Domains by Disentangling Latent
Representations [14.050836886292869]
ドメイン適応アプローチは、ラベルを持つソースドメインから取得した知識を関連するラベルを持つターゲットドメインに転送する役割を担っている。
本稿では,教師付きトレーニングと比較して適応戦略の相対的有効性を捉えるための新しい性能指標を提案する。
論文 参考訳(メタデータ) (2021-08-06T09:43:07Z) - More Separable and Easier to Segment: A Cluster Alignment Method for
Cross-Domain Semantic Segmentation [41.81843755299211]
上記の問題を緩和するために,ドメイン仮定の近接性に基づく新しいUDAセマンティックセマンティックセマンティクス手法を提案する。
具体的には、同じ意味を持つクラスタピクセルにプロトタイプクラスタリング戦略を適用し、ターゲットドメインピクセル間の関連付けをより良く維持します。
GTA5とSynthiaで行った実験は,本法の有効性を実証した。
論文 参考訳(メタデータ) (2021-05-07T10:24:18Z) - Latent Space Regularization for Unsupervised Domain Adaptation in
Semantic Segmentation [14.050836886292869]
セマンティックセグメンテーションにおけるドメインの不一致を減らすために、機能レベルの空間形成正規化戦略を紹介します。
このような手法の有効性を自律運転環境で検証する。
論文 参考訳(メタデータ) (2021-04-06T16:07:22Z) - Margin Preserving Self-paced Contrastive Learning Towards Domain
Adaptation for Medical Image Segmentation [51.93711960601973]
クロスモーダル医療画像セグメンテーションのための自己ペースコントラスト学習モデルを保存する新しいマージンを提案する。
プログレッシブに洗練されたセマンティックプロトタイプの指導により、埋め込み表現空間の識別性を高めるために、コントラスト損失を減少させる新しいマージンが提案される。
クロスモーダル心セグメンテーションタスクの実験は、MPSCLが意味セグメンテーション性能を大幅に改善することを示した。
論文 参考訳(メタデータ) (2021-03-15T15:23:10Z) - Cross-Domain Grouping and Alignment for Domain Adaptive Semantic
Segmentation [74.3349233035632]
深層畳み込みニューラルネットワーク(CNN)内のソースドメインとターゲットドメインにセマンティックセグメンテーションネットワークを適用する既存の技術は、対象ドメイン自身や推定カテゴリ内のクラス間変異を考慮していない。
学習可能なクラスタリングモジュールと、クロスドメイングルーピングとアライメントと呼ばれる新しいドメイン適応フレームワークを導入する。
本手法はセマンティクスセグメンテーションにおける適応性能を一貫して向上させ,様々なドメイン適応設定において最先端を上回っている。
論文 参考訳(メタデータ) (2020-12-15T11:36:21Z) - Towards Uncovering the Intrinsic Data Structures for Unsupervised Domain
Adaptation using Structurally Regularized Deep Clustering [119.88565565454378]
Unsupervised Domain Adapt (UDA) は、ターゲットドメイン上のラベルなしデータの予測を行う分類モデルを学ぶことである。
本稿では,対象データの正規化判別クラスタリングと生成クラスタリングを統合する構造的正規化深層クラスタリングのハイブリッドモデルを提案する。
提案するH-SRDCは, インダクティブ設定とトランスダクティブ設定の両方において, 既存の手法よりも優れている。
論文 参考訳(メタデータ) (2020-12-08T08:52:00Z) - Contradictory Structure Learning for Semi-supervised Domain Adaptation [67.89665267469053]
現在の逆順応法は、クロスドメインの特徴を整列させようとする。
1)条件分布ミスマッチ、2)決定境界のソース領域へのバイアス。
本稿では,対向構造の学習を統一することで,半教師付きドメイン適応のための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-02-06T22:58:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。