論文の概要: Data-Efficient Classification of Radio Galaxies
- arxiv url: http://arxiv.org/abs/2011.13311v2
- Date: Mon, 1 Nov 2021 12:17:58 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-20 12:35:12.883281
- Title: Data-Efficient Classification of Radio Galaxies
- Title(参考訳): データ効率の高い電波銀河の分類
- Authors: Ashwin Samudre, Lijo George, Mahak Bansal, Yogesh Wadadekar
- Abstract要約: 本稿では, 深層学習手法を用いた形態学に基づく電波銀河分類の課題について検討する。
我々は、ツインネットワークに基づく数ショット学習技術と、事前訓練されたDenseNetモデルを用いたトランスファー学習技術を適用した。
我々は、ベント型銀河とFRII型銀河の最大の混同源である最高の性能モデルを用いて、92%以上の分類精度を達成した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The continuum emission from radio galaxies can be generally classified into
different morphological classes such as FRI, FRII, Bent, or Compact. In this
paper, we explore the task of radio galaxy classification based on morphology
using deep learning methods with a focus on using a small scale dataset ($\sim
2000$ samples). We apply few-shot learning techniques based on Twin Networks
and transfer learning techniques using a pre-trained DenseNet model with
advanced techniques like cyclical learning rate and discriminative learning to
train the model rapidly. We achieve a classification accuracy of over 92\%
using our best performing model with the biggest source of confusion being
between Bent and FRII type galaxies. Our results show that focusing on a small
but curated dataset along with the use of best practices to train the neural
network can lead to good results. Automated classification techniques will be
crucial for upcoming surveys with next generation radio telescopes which are
expected to detect hundreds of thousands of new radio galaxies in the near
future.
- Abstract(参考訳): 電波銀河からの連続放出は、一般的にFRI、FRII、ベント、コンプレックスなどの異なる形態分類に分類される。
本稿では,小規模データセット($\sim 2000$ sample)を用いた深層学習法を用いて,形態学に基づく電波銀河分類の課題について検討する。
本研究では, サイクリック学習率や識別学習などの高度な技術を用いた事前訓練DenseNetモデルを用いて, ツインネットワークに基づく数ショット学習手法を適用し, モデルを高速に学習する。
我々は、ベント型銀河とFRII型銀河の最大の混同源である最高の性能モデルを用いて、92\%以上の分類精度を達成する。
私たちの結果は、小さながキュレーションされたデータセットに焦点を合わせることで、ニューラルネットワークのトレーニングにベストプラクティスを使うことが、よい結果をもたらすことを示しています。
自動分類技術は、近日中に数十万個の新しい電波銀河を検出すると期待されている次世代の電波望遠鏡による調査に欠かせない。
関連論文リスト
- Diffusion-Based Neural Network Weights Generation [80.89706112736353]
D2NWGは拡散に基づくニューラルネットワーク重み生成技術であり、転送学習のために高性能な重みを効率よく生成する。
本稿では,ニューラルネットワーク重み生成のための遅延拡散パラダイムを再放送するために,生成的ハイパー表現学習を拡張した。
我々のアプローチは大規模言語モデル(LLM)のような大規模アーキテクチャにスケーラブルであり、現在のパラメータ生成技術の限界を克服しています。
論文 参考訳(メタデータ) (2024-02-28T08:34:23Z) - Morphological Classification of Radio Galaxies using Semi-Supervised
Group Equivariant CNNs [0.0]
推定数兆個の銀河のうち、約100万個のみが電波で検出されている。
本稿では,Farioff-Riley Type I (FRI)とFRII Type II (FRII)に分類するために,半教師付き学習手法を用いる。
The Group Equivariant Convolutional Neural Network (G-CNN) was used as an encoder of the state-of-the-the-art self-supervised method SimCLR and BYOL。
論文 参考訳(メタデータ) (2023-05-31T06:50:32Z) - Convolutional Neural Networks for the classification of glitches in
gravitational-wave data streams [52.77024349608834]
我々は、高度LIGO検出器のデータから過渡ノイズ信号(グリッチ)と重力波を分類する。
どちらも、Gravity Spyデータセットを使用して、スクラッチからトレーニングされた、教師付き学習アプローチのモデルを使用します。
また、擬似ラベルの自動生成による事前学習モデルの自己教師型アプローチについても検討する。
論文 参考訳(メタデータ) (2023-03-24T11:12:37Z) - Keep It Simple: CNN Model Complexity Studies for Interference
Classification Tasks [7.358050500046429]
本研究は,データセットサイズ,CNNモデル複雑性,分類精度のトレードオフを,分類難度に応じて検討する。
3つの無線データセットをベースとした本研究では,パラメータの少ないより単純なCNNモデルと,より複雑なモデルが実現可能であることを示す。
論文 参考訳(メタデータ) (2023-03-06T17:53:42Z) - Semi-Supervised Domain Adaptation for Cross-Survey Galaxy Morphology
Classification and Anomaly Detection [57.85347204640585]
We developed a Universal Domain Adaptation method DeepAstroUDA。
異なるタイプのクラスオーバーラップしたデータセットに適用することができる。
初めて、我々は2つの非常に異なる観測データセットに対するドメイン適応の有効利用を実演した。
論文 参考訳(メタデータ) (2022-11-01T18:07:21Z) - Decision Forest Based EMG Signal Classification with Low Volume Dataset
Augmented with Random Variance Gaussian Noise [51.76329821186873]
我々は6種類の手振りを限定的なサンプル数で分類できるモデルを作成し、より広い聴衆によく一般化する。
信号のランダムなバウンドの使用など、より基本的な手法のセットにアピールするが、これらの手法がオンライン環境で持てる力を示したいと考えている。
論文 参考訳(メタデータ) (2022-06-29T23:22:18Z) - Morphological classification of compact and extended radio galaxies
using convolutional neural networks and data augmentation techniques [0.0]
この研究は、FIRST (Faint Images of the Radio Sky at Twenty Centimeters) からのアーカイブデータを用いて、電波銀河を4つのクラスに分類する。
この研究で示されたモデルは、畳み込みニューラルネットワーク(CNN)に基づいている。
本モデルでは,精度,リコール,F1スコアの平均96%の独立したテストサブセットを用いて,選択した電波源のクラスを分類した。
論文 参考訳(メタデータ) (2021-07-01T11:53:18Z) - ALT-MAS: A Data-Efficient Framework for Active Testing of Machine
Learning Algorithms [58.684954492439424]
少量のラベル付きテストデータのみを用いて機械学習モデルを効率的にテストする新しいフレームワークを提案する。
ベイズニューラルネットワーク(bnn)を用いたモデルアンダーテストの関心指標の推定が目的である。
論文 参考訳(メタデータ) (2021-04-11T12:14:04Z) - DeepMerge II: Building Robust Deep Learning Algorithms for Merging
Galaxy Identification Across Domains [0.0]
天文学では、ニューラルネットワークはしばしばシミュレーションデータで訓練され、望遠鏡の観測に使用されます。
従来の深層学習アルゴリズムと比較して,各領域適応手法の追加により分類器の性能が向上することを示した。
この2つの例は、遠方の銀河の2つのIllustris-1シミュレーションデータセットと、近くの銀河のシミュレーションデータとSloan Digital Sky Surveyの観測データである。
論文 参考訳(メタデータ) (2021-03-02T00:24:10Z) - A Deep Learning Based Ternary Task Classification System Using Gramian
Angular Summation Field in fNIRS Neuroimaging Data [0.15229257192293197]
機能近赤外分光法(FNIRS)は、血流パターンを研究するために用いられる非侵襲的、経済的手法である。
提案手法は,生のfNIRS時系列データをGramian Angular Summation Fieldを用いた画像に変換する。
深層畳み込みニューラルネットワーク(Deep Convolutional Neural Network, CNN)ベースのアーキテクチャは、メンタル算術、運動画像、アイドル状態などのタスク分類に使用される。
論文 参考訳(メタデータ) (2021-01-14T22:09:35Z) - ReMarNet: Conjoint Relation and Margin Learning for Small-Sample Image
Classification [49.87503122462432]
ReMarNet(Relation-and-Margin Learning Network)と呼ばれるニューラルネットワークを導入する。
本手法は,上記2つの分類機構の双方において優れた性能を発揮する特徴を学習するために,異なるバックボーンの2つのネットワークを組み立てる。
4つの画像データセットを用いた実験により,本手法はラベル付きサンプルの小さな集合から識別的特徴を学習するのに有効であることが示された。
論文 参考訳(メタデータ) (2020-06-27T13:50:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。