論文の概要: Morphological Classification of Radio Galaxies using Semi-Supervised
Group Equivariant CNNs
- arxiv url: http://arxiv.org/abs/2306.00031v1
- Date: Wed, 31 May 2023 06:50:32 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-02 20:39:13.006302
- Title: Morphological Classification of Radio Galaxies using Semi-Supervised
Group Equivariant CNNs
- Title(参考訳): 半教師付き群同変cnnによるラジオ銀河の形態分類
- Authors: Mir Sazzat Hossain (1), Sugandha Roy (1), K. M. B. Asad (1 and 2 and
3), Arshad Momen (1 and 2), Amin Ahsan Ali (1), M Ashraful Amin (1), A. K. M.
Mahbubur Rahman (1) ((1) Center for Computational & Data Sciences,
Independent University, Bangladesh, (2) Department of Physical Sciences,
Independent University, Bangladesh, (3) Astronomy and Radio Research Group,
SETS, Independent University, Bangladesh)
- Abstract要約: 推定数兆個の銀河のうち、約100万個のみが電波で検出されている。
本稿では,Farioff-Riley Type I (FRI)とFRII Type II (FRII)に分類するために,半教師付き学習手法を用いる。
The Group Equivariant Convolutional Neural Network (G-CNN) was used as an encoder of the state-of-the-the-art self-supervised method SimCLR and BYOL。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Out of the estimated few trillion galaxies, only around a million have been
detected through radio frequencies, and only a tiny fraction, approximately a
thousand, have been manually classified. We have addressed this disparity
between labeled and unlabeled images of radio galaxies by employing a
semi-supervised learning approach to classify them into the known
Fanaroff-Riley Type I (FRI) and Type II (FRII) categories. A Group Equivariant
Convolutional Neural Network (G-CNN) was used as an encoder of the
state-of-the-art self-supervised methods SimCLR (A Simple Framework for
Contrastive Learning of Visual Representations) and BYOL (Bootstrap Your Own
Latent). The G-CNN preserves the equivariance for the Euclidean Group E(2),
enabling it to effectively learn the representation of globally oriented
feature maps. After representation learning, we trained a fully-connected
classifier and fine-tuned the trained encoder with labeled data. Our findings
demonstrate that our semi-supervised approach outperforms existing
state-of-the-art methods across several metrics, including cluster quality,
convergence rate, accuracy, precision, recall, and the F1-score. Moreover,
statistical significance testing via a t-test revealed that our method
surpasses the performance of a fully supervised G-CNN. This study emphasizes
the importance of semi-supervised learning in radio galaxy classification,
where labeled data are still scarce, but the prospects for discovery are
immense.
- Abstract(参考訳): 推定数兆の銀河のうち、約100万の銀河が電波で検出されており、ほんの一部、約1000の銀河が手動で分類されているだけである。
我々は、半教師付き学習アプローチを用いて、既知のファナロフ・ライリータイプi(fri)とタイプii(frii)のカテゴリに分類することにより、電波銀河のラベル付き画像とラベル付き画像の相違に対処した。
グループ同変畳み込みニューラルネットワーク(g-cnn)は、最先端の自己教師付きメソッドであるsimclr(visual representationsのコントラスト学習のためのシンプルなフレームワーク)とbyol(bootstrap your own latent)のエンコーダとして使用された。
G-CNNはユークリッド群 E(2) の同値を保ち、グローバルに向き付けられた特徴写像の表現を効果的に学習することができる。
表現学習の後、完全接続された分類器を訓練し、ラベル付きデータでトレーニングされたエンコーダを微調整した。
提案手法は,クラスタ品質,収束率,精度,精度,リコール,f1-scoreなど,既存の最先端手法よりも優れていることを示す。
さらに, t-testによる統計的意義試験により, 完全教師付きG-CNNの性能を上回った。
この研究は、ラベル付きデータがまだ乏しいが発見の可能性は非常に大きい電波銀河分類における半教師付き学習の重要性を強調した。
関連論文リスト
- Enhancing Visual Continual Learning with Language-Guided Supervision [76.38481740848434]
継続的な学習は、モデルが以前獲得した知識を忘れずに新しいタスクを学習できるようにすることを目的としている。
ワンホットラベルが伝達する少ない意味情報は,タスク間の効果的な知識伝達を妨げている,と我々は主張する。
具体的には, PLM を用いて各クラスのセマンティックターゲットを生成し, 凍結し, 監視信号として機能する。
論文 参考訳(メタデータ) (2024-03-24T12:41:58Z) - Generalized Category Discovery with Clustering Assignment Consistency [56.92546133591019]
一般化圏発見(GCD)は、最近提案されたオープンワールドタスクである。
クラスタリングの一貫性を促進するための協調学習ベースのフレームワークを提案する。
提案手法は,3つの総合的なベンチマークと3つのきめ細かい視覚認識データセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2023-10-30T00:32:47Z) - GenCo: An Auxiliary Generator from Contrastive Learning for Enhanced
Few-Shot Learning in Remote Sensing [9.504503675097137]
我々は、バックボーンを事前訓練し、同時に特徴サンプルの変種を探索するジェネレータベースのコントラスト学習フレームワーク(GenCo)を導入する。
微調整では、補助ジェネレータを使用して、特徴空間内の限られたラベル付きデータサンプルを濃縮することができる。
本稿では,2つの重要なリモートセンシングデータセットにおいて,この手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-07-27T03:59:19Z) - PromptCAL: Contrastive Affinity Learning via Auxiliary Prompts for
Generalized Novel Category Discovery [39.03732147384566]
Generalized Novel Category Discovery (GNCD) 設定は、既知のクラスや新しいクラスから来るラベルなしのトレーニングデータを分類することを目的としている。
本稿では,この課題に対処するために,PromptCALと呼ばれる補助視覚プロンプトを用いたコントラスト親和性学習法を提案する。
提案手法は,クラストークンと視覚的プロンプトのための既知のクラスと新しいクラスのセマンティッククラスタリングを改善するために,信頼性の高いペアワイズサンプル親和性を発見する。
論文 参考訳(メタデータ) (2022-12-11T20:06:14Z) - Semi-Supervised Domain Adaptation for Cross-Survey Galaxy Morphology
Classification and Anomaly Detection [57.85347204640585]
We developed a Universal Domain Adaptation method DeepAstroUDA。
異なるタイプのクラスオーバーラップしたデータセットに適用することができる。
初めて、我々は2つの非常に異なる観測データセットに対するドメイン適応の有効利用を実演した。
論文 参考訳(メタデータ) (2022-11-01T18:07:21Z) - SCARF: Self-Supervised Contrastive Learning using Random Feature
Corruption [72.35532598131176]
本稿では,特徴のランダムなサブセットを乱してビューを形成するコントラスト学習手法であるSCARFを提案する。
SCARFは既存の戦略を補完し、オートエンコーダのような代替手段より優れていることを示す。
論文 参考訳(メタデータ) (2021-06-29T08:08:33Z) - No Fear of Heterogeneity: Classifier Calibration for Federated Learning
with Non-IID Data [78.69828864672978]
実世界のフェデレーションシステムにおける分類モデルのトレーニングにおける中心的な課題は、非IIDデータによる学習である。
このアルゴリズムは, 近似されたssian混合モデルからサンプリングした仮想表現を用いて分類器を調整する。
実験の結果,CIFAR-10,CIFAR-100,CINIC-10など,一般的なフェデレーション学習ベンチマークにおけるCCVRの現状が示された。
論文 参考訳(メタデータ) (2021-06-09T12:02:29Z) - Binary Classification from Multiple Unlabeled Datasets via Surrogate Set
Classification [94.55805516167369]
我々は m 個の U 集合を $mge2$ で二進分類する新しい手法を提案する。
我々のキーとなる考え方は、サロゲート集合分類(SSC)と呼ばれる補助的分類タスクを考えることである。
論文 参考訳(メタデータ) (2021-02-01T07:36:38Z) - EC-GAN: Low-Sample Classification using Semi-Supervised Algorithms and
GANs [0.0]
ラベル付きデータによる分類などの画像解析タスクを可能にするため,半教師付き学習が注目されている。
半教師付き分類にgans(generative adrial network)を用いる一般的なアルゴリズムは、分類と識別のための単一のアーキテクチャを共有している。
これにより、各タスクごとに別々のデータ分散に収束するモデルが必要になり、全体的なパフォーマンスが低下する可能性がある。
完全教師付きタスクの分類を改善するために,GANと半教師付きアルゴリズムを用いた新しいGANモデルであるECGANを提案する。
論文 参考訳(メタデータ) (2020-12-26T05:58:00Z) - Data-Efficient Classification of Radio Galaxies [0.0]
本稿では, 深層学習手法を用いた形態学に基づく電波銀河分類の課題について検討する。
我々は、ツインネットワークに基づく数ショット学習技術と、事前訓練されたDenseNetモデルを用いたトランスファー学習技術を適用した。
我々は、ベント型銀河とFRII型銀河の最大の混同源である最高の性能モデルを用いて、92%以上の分類精度を達成した。
論文 参考訳(メタデータ) (2020-11-26T14:28:19Z) - DeepMerge: Classifying High-redshift Merging Galaxies with Deep Neural
Networks [0.0]
シミュレーション画像において、融合銀河と非融合銀河を区別する作業に畳み込みニューラルネットワーク(CNN)を用いることを示す。
我々は、Illustris-1の宇宙シミュレーションから、融合銀河と非融合銀河の画像を抽出し、観測および実験的ノイズを適用した。
CNNのテストセットの分類精度は、プリスタンが79%、ノイズが76%である。
論文 参考訳(メタデータ) (2020-04-24T20:36:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。