Disentangling anomaly-free symmetries of quantum spin chains
- URL: http://arxiv.org/abs/2503.09717v1
- Date: Wed, 12 Mar 2025 18:08:22 GMT
- Title: Disentangling anomaly-free symmetries of quantum spin chains
- Authors: Sahand Seifnashri, Wilbur Shirley,
- Abstract summary: We prove that any finite, internal, anomaly-free symmetry in a 1+1d lattice Hamiltonian system can be disentangled into an on-site symmetry.
- Score: 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: We clarify the lore that anomaly-free symmetries are either on-site or can be transformed into on-site symmetries. We prove that any finite, internal, anomaly-free symmetry in a 1+1d lattice Hamiltonian system can be disentangled into an on-site symmetry by introducing ancillas and applying conjugation via a finite-depth quantum circuit. We provide an explicit construction of the disentangling circuit using Gauss's law operators and emphasize the necessity of adding ancillas. Our result establishes the converse to a generalized Lieb-Schultz-Mattis theorem by demonstrating that any anomaly-free symmetry admits a trivially gapped Hamiltonian.
Related papers
- Symmetry breaking in chaotic many-body quantum systems at finite temperature [0.0]
Recent work has shown that the entanglement of finite-temperature eigenstates in chaotic quantum many-body local Hamiltonians can be accurately described.
We build upon this result to investigate the universal symmetry-breaking properties of such eigenstates.
arXiv Detail & Related papers (2025-04-08T15:41:54Z) - Observation of non-Hermitian bulk-boundary correspondence in non-chiral non-unitary quantum dynamics of single photons [31.05848822220465]
In non-Hermitian systems, preserved chiral symmetry is one of the key ingredients, which plays a pivotal role in determining non-Hermitian topology.
We theoretically predict and experimentally demonstrate the bulk-boundary correspondence of a one-dimensional (1D) non-Hermitian system with chiral symmetry breaking.
arXiv Detail & Related papers (2025-04-07T09:43:43Z) - Exotic phase transitions in spin ladders with discrete symmetries that emulate spin-1/2 bosons in two dimensions [15.282090777675679]
We introduce a spin ladder with discrete symmetries designed to emulate a two-dimensional spin-1/2 boson system at half-filling.
An exact duality transformation maps it onto a $mathbbZ$ gauge theory of three partons, analogous to the U(1) gauge theory of chargons and spinons in two-dimensional spin-1/2 boson systems.
arXiv Detail & Related papers (2024-12-23T19:06:21Z) - Noninvertible operators in one, two, and three dimensions via gauging spatially modulated symmetry [15.282090777675679]
We construct concrete lattice models with non-invertible duality defects via gauging spatially modulated symmetries.<n>Our work provides a unified and systematic analytical framework for constructing exotic duality defects by gauging relevant symmetries.
arXiv Detail & Related papers (2024-09-25T08:52:07Z) - Symmetry-restricted quantum circuits are still well-behaved [45.89137831674385]
We show that quantum circuits restricted by a symmetry inherit the properties of the whole special unitary group $SU(2n)$.
It extends prior work on symmetric states to the operators and shows that the operator space follows the same structure as the state space.
arXiv Detail & Related papers (2024-02-26T06:23:39Z) - Efficient quantum algorithms for testing symmetries of open quantum
systems [17.55887357254701]
In quantum mechanics, it is possible to eliminate degrees of freedom by leveraging symmetry to identify the possible physical transitions.
Previous works have focused on devising quantum algorithms to ascertain symmetries by means of fidelity-based symmetry measures.
We develop alternative symmetry testing quantum algorithms that are efficiently implementable on quantum computers.
arXiv Detail & Related papers (2023-09-05T18:05:26Z) - Theory of Quantum Circuits with Abelian Symmetries [0.0]
Generic unitaries respecting a global symmetry cannot be realized, even approximately, using gates that respect the same symmetry.<n>We show that while the locality of interactions still imposes additional constraints on realizable unitaries, certain restrictions do not apply to circuits with Abelian symmetries.<n>This result suggests that global non-Abelian symmetries may affect the thermalization of quantum systems in ways not possible under Abelian symmetries.
arXiv Detail & Related papers (2023-02-24T05:47:13Z) - Spontaneous symmetry breaking and ghost states supported by the
fractional nonlinear Schr\"odinger equation with focusing saturable
nonlinearity and PT-symmetric potential [13.844860643212105]
We report a novel spontaneous symmetry breaking phenomenon and ghost states existed in the framework of the fractional nonlinear Schr"odinger (FNLS) equation.
The continuous asymmetric soliton branch bifurcates from the fundamental symmetric one as the power exceeds some critical value.
We explore the elastic/semi-elastic collision phenomena between symmetric and asymmetric solitons.
arXiv Detail & Related papers (2022-10-01T13:18:22Z) - Duality viewpoint of criticality [10.697358928025304]
We study quantum many-body systems which are self-dual under duality transformation connecting different symmetry protected topological phases.
We provide a geometric explanation of the criticality of these self-dual models.
We illustrate our results with several examples in one and two dimensions, which separate two different SPTs.
arXiv Detail & Related papers (2022-09-27T15:13:27Z) - Symmetry protected entanglement in random mixed states [0.0]
We study the effect of symmetry on tripartite entanglement properties of typical states in symmetric sectors of Hilbert space.
In particular, we consider Abelian symmetries and derive an explicit expression for the logarithmic entanglement negativity of systems with $mathbbZ_N$ and $U(1)$ symmetry groups.
arXiv Detail & Related papers (2021-11-30T19:00:07Z) - Information retrieval and eigenstates coalescence in a non-Hermitian
quantum system with anti-$\mathcal{PT}$ symmetry [15.273168396747495]
Non-Hermitian systems with parity-time reversal ($mathcalPT$) or anti-$mathcalPT$ symmetry have attracted a wide range of interest owing to their unique characteristics and counterintuitive phenomena.
We implement a Floquet Hamiltonian of a single qubit with anti-$mathcalPT$ symmetry by periodically driving a dissipative quantum system of a single trapped ion.
arXiv Detail & Related papers (2021-07-27T07:11:32Z) - Latent symmetry induced degeneracies [0.0]
We develop an approach to explain degeneracies by tracing them back to symmetries of an isospectral effective Hamiltonian.
As an application, we relate the degeneracies induced by the rotation symmetry of a real Hamiltonian to a non-abelian latent symmetry group.
arXiv Detail & Related papers (2020-11-26T17:37:30Z) - Stationary State Degeneracy of Open Quantum Systems with Non-Abelian
Symmetries [3.423206565777368]
We study the null space degeneracy of open quantum systems with multiple non-Abelian, strong symmetries.
We apply these results within the context of open quantum many-body systems.
We find that the derived bound, which scales at least cubically in the system size the $SU(2)$ symmetric cases, is often saturated.
arXiv Detail & Related papers (2019-12-27T15:50:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.